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Motivation

LLMs increasingly used for economic/financial forecasting

News headlines → stock returns
Earnings calls → capital expenditures

Key concern: Are predictions genuine reasoning or memorization?

Lookahead bias: Models trained on historical data may have seen future
outcomes

Challenge: Limited out-of-sample data, retraining prohibitively expensive

Our Contribution
A cost-efficient statistical test to detect lookahead bias without model retraining
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Example: The Lookahead Problem

Prompt (July 28, 2020)

”Kodak Triples on Loan to Make Covid-19 Drug Ingredients. Is this good or bad
for the stock price?”

Two possibilities:

1 Genuine reasoning: Analyze government contract impact

2 Memorization: Recall July 29 headline: ”Kodak’s stock rose so fast it tripped
20 circuit breakers... shares ended up 318%”

Key Insight

If training corpus contains both the event AND its outcome, the model may
”recall” rather than ”reason”
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Lookahead Propensity (LAP)

Building on Membership Inference Attacks (MIA):

For a prompt with tokens w = (w1, . . . ,wN):

LAP(w ,K ) = exp

(
1

|SK |
∑
t∈SK

logPθ(wn|w≤n−1)

)
where SK = bottom 20% of tokens ranked by probability

Intuition:

Common words (”the”, ”and”) have high probability regardless

Rare/unusual tokens are informative

Seen text → fewer low-probability outliers → higher LAP

Unseen text → more outliers → lower LAP

Based on MIN-K% PROB (Shi et al., 2024): AUC = 0.72 on WIKIMIA, 0.88 on
copyrighted books
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Econometric Framework

Data generating process:

Yt+1 = µ(Xt) + ϵt+1

LLM prediction with lookahead bias:

µ̂t = µ(Xt) + Ltϵt+1

where Lt measures memorization strength

Test regression:

Yt+1 = β1µ̂t + β2Lt + β3(Lt × µ̂t) + εt+1

Theorem (Detection)

β3 > 0 ⇐⇒ Lookahead bias present

Key insight: If accuracy increases with LAP, predictions rely on memorization
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Empirical Implementation

Exercise 1: News Headlines → Stock Returns

91,361 Bloomberg headlines (2012-2023)

1,587 CRSP-listed companies

LLM classifies: good (+1), neutral (0), bad (-1)

Exercise 2: Earnings Calls → CapEx

74,338 firm-quarter observations (2006-2020)

3,897 unique firms

LLM predicts: significantly decrease (-1) to significantly increase (+1)

Model: Llama-3.3 (70B, Dec 2024)

Open-source: provides token probabilities for LAP computation

Replicable: fixed checkpoint on HuggingFace
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Results: News Headlines Predict Stock Returns

(1) Baseline (2) With LAP

LLM 0.210*** 0.001
(12.24) (0.03)

LAP -1.297***
(-2.61)

LLM × LAP 2.866***
(4.86)

Firm FE Yes Yes
Date FE Yes Yes
R2 0.179 0.180
N 91,361 91,361

Economic magnitude: 1 SD increase in LAP raises LLM’s marginal effect by
0.077% (37% of baseline effect)
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Results: Earnings Calls Predict Capital Expenditures

(1) Baseline (2) With LAP

LLM 0.798*** 0.514***
(15.89) (5.88)

LAP -0.016
(-0.57)

LLM × LAP 0.148***
(3.59)

Firm FE Yes Yes
Quarter FE Yes Yes
R2 0.642 0.643
N 74,338 74,338

Economic magnitude: 1 SD increase in LAP raises LLM’s marginal effect by
0.149% (19% of baseline effect)
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Stronger Effect for Small Firms

Finding: Predictability stronger for small-cap stocks

Without Triple With Triple
Interaction Interaction

LLM × Small 0.263*** -0.316**
(4.23) (-2.03)

LLM × LAP × Small 7.910***
(3.53)

Robustness checks:

Results hold controlling for:

First-token conditional probability P(wN+1|w≤N)
Model’s self-reported confidence

LAP captures distinct mechanism from model confidence
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Out-of-Sample Validation

Placebo test using Llama-2:

In-sample: Jan 2012 - Sep 2022

Out-of-sample: Sep 2023 - Dec 2024 (after release)

In-Sample Out-of-Sample

(1) (2) (3) (4)

LLMstd 0.049*** 0.084*** 0.049*** 0.084***
LLMstd× LAPstd 0.012*** -0.007

(3.44) (-0.74)

Bootstrap analysis: In-sample β3 lies outside 95th percentile of out-of-sample
distribution (p = 0.033)

⇒ Confirms lookahead bias in training period, absent post-release
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Bootstrap Distribution
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Figure: Bootstrap distribution of interaction coefficient β from out-of-sample data
(10,000 replications). Blue dashed line: 95th percentile. Red solid line: in-sample
estimate (p = 0.033).

Key insight: In-sample coefficient clearly separated from out-of-sample
distribution, confirming lookahead bias

Zhenyu Gao, Wenxi Jiang, Yutong Yan (CUHK Business School) LLM Lookahead Bias January 1, 2026 12 / 14



Bootstrap Distribution

0.05 0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03
(b)
out_of_sample

0

5

10

15

20

25

30

35

40
De

ns
ity

P95
in_sample (p=0.03)

Figure: Bootstrap distribution of interaction coefficient β from out-of-sample data
(10,000 replications). Blue dashed line: 95th percentile. Red solid line: in-sample
estimate (p = 0.033).

Key insight: In-sample coefficient clearly separated from out-of-sample
distribution, confirming lookahead bias

Zhenyu Gao, Wenxi Jiang, Yutong Yan (CUHK Business School) LLM Lookahead Bias January 1, 2026 13 / 14



Conclusion and Implications

Main findings:

1 LAP test reveals significant lookahead bias in LLM forecasts

2 Stock returns: 37% of apparent predictability from memorization

3 CapEx: 19% of effect attributable to memorization

4 Bias disappears in genuine out-of-sample periods

Implications:

Lookahead bias is task-specific, not universal

Depends on: data visibility, model architecture, prompt design

LAP provides cost-efficient diagnostic (no retraining needed)

Essential for validating LLM-based research in finance/economics

Takeaway

Distinguishing memory from reasoning is crucial as LLMs become integrated into
empirical research
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