Bandit Algorithms for Factorial Experiments
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« UCB applied to trees (UCT) [3] « Varying number of factors
« Combines UCB1 and BATS. oo
* One of the most popular algorithms in board games.
« UCT-Laplace

« Uses tighter concentration bound from [4].
 Explicit control of failure probability §.
* With confidence 1 - 6, selection rule is

Standard Bandit Formation

* Multi-armed bandit (MAB) problem is a classic  MAB is a problem where a decision maker has many
Reinforcement Learning problem where a player faces slot machines to choose from.
multiple arms, each associated with a probability
distribution over possible rewards [1].
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« Upper Confidence bound applied to trees (UCT)
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UCT is naturally a better fit to solve Multivariate bandit « Choose an action a, from action set A, and receives B —a. . 4 Ny ¢ ot Figure 4: factorial design with 6 factors x 2 choices per

problems than other approaches by treating the a reward 7. vt = Mot \J 2N, ‘ factor with linear outcome function
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g:::;lr?n making process as a bandit algorithm for tree fBoIaBI. mhaxun_lzet%:t:lrtt: - ) where K is the number of choices. . Non.linear Outcome Function
' y choosing the optimat action a, = arggjfxl"a’  BATS formation in Factorial experiments: . .

* Why to use Bandit Algorithms for factorial : ¥here iz ItErEDa]' at d is equivalent t . ?IVTerr;y v:ﬁﬁtgres ?hn;\j/ll\;r?g %Cﬁidpeir;?fiéh tree level "

experiments? Multi-armed bandits minimize the ° r.na_><|m;rz]e © culrrj[u ative retwar IS equivalent 1o P - -

work has shown Linear Thompson Sampling (LinTS) - :

" ot Z[ﬂa*_ﬂat] . . .
performs well than traditional heuristics [2]. . Using synthetic experiments, we show 2 20
t= . - .
« UCT-Laplace significantly improves the performance I ) p—
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 Robustness and outperformance of BATS formation

Figure 5: factorial design with 3 factors x 2 choices per
factor with max outcome function

* Pickthe arm a, = argmaxB,, .

» Goal: identify the optimal sequence of choices acA | than MAB and LB formation. R-0.1 o
* The most popular choice is UCB1: . UCT vs UCT-Laplace ) e 100
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{t\),:ll?ec,: rgg:}es Factor 1 {color) Figure 1: factorial design with 3 factors x 2 choices per * Slmple Settmg
blue red . o . factor with linear outcome function « LB formation breaks due to strong linearity assumption.
Two choices: » Factor 2 (theme) Llnear Bandlt Formatlon o Vary|ng number of choices per factor « Standard bandit algorithms are still preferred.
{1.2} Li : « Complex setting
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* Uptimal action £ ' 5] « BATS formation outperforms LB and MAB formation.
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factorial experiments, algorithms under which are robust and
best-performing under complex settings.
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« Given M factors and N choices per factor.
« NM actions (binary vector).
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« Traditional way: separate experiments (A/B testing) in
each choice of one factor (very wasteful)
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« Standard bandit algorithms are preferred.
« Complex setting
« BATS formation can capture the underlying structure.

¢ Setv; «v'.
* At depth D, the player receives a reward ;.

* Algorithms under BATS formation seem more robust to noise
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planning. In European conference on machine learning (pp. 282-293).
Springer, Berlin, Heidelberg.

[4] Abbasi-Yadkori, Y., Pal, D., & Szepesvari, C. (2011). Improved algorithms
for linear stochastic bandits. In Advances in Neural Information Processing
Systems (pp. 2312-2320).



