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Abstract

Factorial experiments [Yates, 1978] are experimental designs where one faces a se-

quence of decisions (factors) between different choices. These designs are commonly used

because of their efficiency and the opportunity to detect interactions amongst interven-

tion components. For example, factorial experiments are used for optimizing adaptive

health interventions [Collins et al., 2007, Baker et al., 2017]. The goal is typically to iden-

tify the sequence of choices which optimizes some objective function. This can formulated

as a multi-armed bandit problem [Robbins et al., 1952], where a player episodically select

actions (here a sequence) and observes an reward. Given M factors and N choices per

factor, this would result in NM actions in the standard bandit setting. The number of ac-

tions therefore scales exponentially with the number of factors, learning algorithms being

oblivious to the tree structure underlying the decision sequence. Under the assumption

that the end reward is a linear combination of the selected choices rewards, it has been

shown previously that the problem can be captured by linear bandits [Abbasi-Yadkori

et al., 2011, Agrawal and Goyal, 2013]. In this formulation, an action correspond to a

vector of length M × N encoding the choice selected for each factor. In this work, we

aim to get rid of this assumption and tackle the problem using bandit algorithms for tree

search [Kocsis and Szepesvári, 2006]. Under the tree search setting, the sequential deci-

sion tree is explicitly represented and one tries to optimize the path in the tree. For this

task, we consider a popular bandit algorithm for tree search, that is Upper Confidence

Bound applied to Trees (UCT) [Kocsis and Szepesvári, 2006]. UCT treats each decision

node as a separate standard bandit problem, picking the choice which maximizes an up-
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per confidence bound based on Hoeffding bounds, akin to the UCB1 [Auer et al., 2002]

algorithm for standard bandits.

Using synthetic experiments, we first show that using tighter concentration bounds

proposed in [Abbasi-Yadkori et al., 2011] can significantly improve the performance of

UCT for tree search. Using further experiments, we investigate various factorial exper-

imental design configurations: varying number of factors, number of choices per fac-

tors, amplitude of noise, and reward function. More specifically, we compare the per-

formance of algorithms under three different formulations of the factorial experiment: 1)

standard bandits; 2) linear bandits; and 3) bandits for tree search. We show that sim-

ple settings (typically few number of factors and choices per factors) lead to few actions

under the standard bandits formulation and therefore can easily and efficiently be tack-

led using standard bandit algorithms (for example, Thompson Sampling [Thompson,

1933, Chapelle and Li, 2011]). However, as the number of actions increases (due to more

factors and/or more choices per factors), we observe that capturing the underlying tree

structure is essential for robustness, whether the reward function is linear or not. Finally,

we observe that the algorithms working under the bandits for tree search formulation

of factorial experimental designs also seem more robust to the noise variance, compared

with approaches learning under other formulations.
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Abbreviation

BATS Bandit Algorithm for Tree Search

MAB Multi-Armed Bandit

MVB Multivariate Bandit

UCB Upper Confidence Bound

UCT Upper Confidence Bounds applied to Trees

RL Reinforcement Learning

RCT Randomized Controlled Trials

OFU Optimism in the Face of Uncertainty

OFUL Optimism in the Face of Uncertainty Linear Bandit

TS Thompson Sampling

MDP Markov Decision Process

MCTS Monte Carlo Tree Search

LinTS Linear Thompson Sampling
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Notation

1{cond} Indicator function to be 1 if the condition is satisfied, otherwise 0

ε Noise generated by the environment

Cp Exploration constant

Dk Reward distribution of arm k

R(S) Reward function of a super arm

N Total number of times of all arms played

Nk Total number of times of the arm k being played

N Gaussian distribution

T Time horizon

K Set of arms

K Total number of arms

k A single arm

kt An arm selected at time step t

Yk,t Outcome (Reward) sampled from reward distribution Dk for arm k at time step t

µk Expected mean of Dk for the arm k
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µ? Optimal expected outcome (reward) generated from the optimal arm k?

µ̂k Estimated mean of the arm k

RT Cumulative regret till horizon T

S A super arm composed of m individual arms

S Super arm space of all super arms

m Size of the super arm S, also denoted as |S|

x A single arm

X Set of arms

Dt Features of arms

Xt The chosen arm in linear bandits

Yt Outcome (Reward) in linear bandits
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Chapter 1

Background

1.1 Factorial Experiments

The initiative to study MVB comes from the factorial design problem. A factorial design

is a test whose structure comprises of at least two factors, each with discrete conceivable

values, called choices, and whose exploratory units go up against every single possi-

ble combination of these dimensions over every single such factor [Montgomery, 1995].

These designs are commonly used because of their efficiency and the opportunity to de-

tect interactions amongst intervention components. For example, factorial experiments

are used for optimizing adaptive health intervention [Collins et al., 2007, Baker et al.,

2017]. The goal is typically to identify the sequence of choices which optimizes some

objective function.

It is beneficial when researchers need to investigate the effects on a single dependent

variable in an environment consisting of two or more independent variables. However,

a full factorial experiment requires a large size of samples in real applications. Although

fractional factorial designs alias high-order interaction effects of using sample sizes more

efficiently, these approaches all seek to select the set of factors to explain given data, rather

than maximizing the reward received from the set of factors. Choosing a set of interac-
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tions to allow into the bandit is analogous to choosing a particular fractional factorial

design in a classical problem.

To illustrate the process of factorial design experiments, we present a simple exam-

ple: a medical app aims to maximize the participation of patients to keep track of their

recovery. Studies have shown that the increasing use of healthcare apps, i.e. health edu-

cation apps for patients, will improve users’ health condition [Loiselle and Ahmed, 2017].

Suppose there are only two factors considered, message delivery method and delivery fre-

quency. For the factor message delivery method, there exist two choices, email and SMS.

For the factor delivery frequency, there are also two choices, for email, every day or ev-

ery week, and for SMS, every hour or every day. Statisticians usually forms this as two

choices, less frequent, or more frequent 1. Therefore, this example has four treatment com-

binations, called a 2 factors × 2 choices per factor factorial design. A full factorial design

considers all possible treatment combinations, which turns out to be unfeasible as the

number of factors and the number of levels in each factor increase. In this case, a frac-

tional factorial design may be done, in which some of the treatment combinations may be

omitted.

1.2 The Multi-Armed Bandit Problem

Bandit problem is also described as an online decision making problem with discrete

time steps. A decision maker sequentially chooses arms from the set of K possible arms

K = {1, 2, . . . , K}, and an environment that assigns rewards to the arms and provides the

agent with different types of feedback, which we will define later in this chapter.

Algorithm 1 shows the general framework for the MAB game. At each time step

t ∈ N, the environment chooses a vector of K rewards Yt ∈ [0, 1]K , whose components are

denoted by Yk,t for each arm k ∈ K. The reward Yk,t of each arm is assumed to be in [0, 1].

At the same time, the decision maker chooses the arm kt which will be played in that time

1We will discuss the discrepancy in experiment design between our approach and statistical approaches,
and explain the advantages of bandit algorithms for factorial experiments.
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step t, based on the feedback from its previous interactions with the environment. The

decision maker then observe the reward given by the environment based on the choice

of the type of feedback in this game. After obtaining the feedback, the decision maker

updates the estimated reward for each arm k ∈ K. The goal of the decision maker is to

maximize the cumulative reward of its choices of selected arms after T time steps, i.e.,∑T
t=1 Ykt,t. The number of time steps T is called the time horizon.

Algorithm 1: General MAB Framework
Input: Time horizon T , K number of arms with unknown parameters of reward

distribution
1 for each time step t := 1, 2, 3, ..., T do
2 Choose an arm kt ∈ K, and sends it to the environment.
3 Observe the reward depending on the feedback chosen.
4 Update the estimated rewards ∀k ∈ K.
5 end

1.2.1 Stochastic Multi-Armed Bandits

In stochastic MAB, the reward of each arm k ∈ K at each time step t is drawn from

a fixed distribution Dk on [0, 1], independently from all other rewards of that action and

from the rewards of other actions [Robbins et al., 1952]. For every arm k ∈ K, the dis-

tribution Dk, with expected mean we denote by µk, is not known to the decision maker.

In this work, we will mainly focus on stochastic MAB. For Gaussian Bandits, the reward

generated from the environment at t-th time step for arm k is

Yk,t ∼ N (µk, σ
2), (1.1)

where µk is the expected mean of the Gaussian distributionNk of the reward of the arm k,

and σ2 is the variance ofNk. Both are unknown to the decision maker during the game. It

can also be understood as the reward is the sum of the expected mean of the distribution
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plus some noise generated by the environment

Yk,t = µk + εt, (1.2)

where ε is the noise such that

εt ∼ N (0, σ2) (1.3)

It is clear that the two presentations of the reward Yk,t are equivalent. There are also other

variants other than Gaussian bandits, such as Bernoulli bandits. However, we will focus

on Gaussian bandits in the following sections.

1.3 Types of Information Feedback

In bandits literature, the feedback that the decision maker could receive from the en-

vironment can be characterized into three broad categories, full information feedback,

partial information (semi-bandit) feedback and bandit (full bandit) feedback.

1.3.1 Full Information Feedback

In full information feedback, the environment reveals the rewards of all the arms k ∈ K.

Therefore, the decision maker can fully observe the reward vector chosen by the environ-

ment Yt ∈ [0, 1]K [Takimoto and Warmuth, 2003, Kalai and Vempala, 2005, Cesa-Bianchi

and Lugosi, 2006].

1.3.2 Partial Information Feedback

In partial information feedback, also called semi-bandit feedback in combinatorial bandit

setting, the environment only reveals the rewards of the selected arm kt ∈ K. Hence, the

decision maker can only observe the reward of the selected arm Ykt,t from the arm kt. In
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combinatorial setting, the decision maker observes the outcomes of the selected m arms

{Ykt,t}kt∈St from the arms {kt}kt∈St , as well as the reward of the super arm St, where a

super arm St is composed of m individual arms [Neu and Bartók, 2013, Sankararaman

and Slivkins, 2017]. We will define the reward function, taking a super arm as input in

the next section.

1.3.3 Bandit Feedback

Bandit feedback, also called full bandit feedback, mostly occurs in combinatorial bandit

setting, where the decision maker is allowed to select more than one arm. When a decision

maker selects m arms to construct a super arm St, the environment only reveals a reward

for the super arm St to the decision maker. Unlike in other settings, the decision maker

is not able to observe the reward for a single arm but a composite of the m arms selected.

One special case is that when m = 1, bandit feedback is equivalent to partial information

feedback. We define the expectation of the reward of the super arm St as the outcome

from an unknown reward function R(·) at time step t

E[rt] = R(St) (1.4)

Notice that we use different notation for the reward of the super arm as rt to distinguish

from the Ykt,t, since Ykt,t is defined as the reward for a single arm in non-combinatorial

bandit setting, but the feedback of individual arms in combinatorial bandit setting with

full information feedback or semi-bandit feedback.

The reason why we differentiate the notation in this way is as follows: in combina-

torial bandit setting with semi-bandit feedback, the decision maker is able to observe the

outcomes of any individual arms included in the selected super arm and the reward of

the super arm. The reward of the super arm does not affect the decision maker’s decision

phase while choosing a super arm, rather than in the evaluation metrics when we evalu-

ate the algorithm. On the other hand, the outcomes of any individual arms included in the
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selected super arm are updated every time the decision maker observes them, and the de-

cision maker makes decision of next super arm to choose based on that. We will introduce

combinatorial bandit later in this chapter. There are not many works that have studied

this setting due to its complexity and many existing algorithms designed for semi-bandit

feedback might suffer sub-optimality in this setting.

Most works have assumed a linear reward function when solving problems with ban-

dit feedback, however, this assumption might be too strong to fail. We will show the

comparison in the experiments section.

1.4 Performance Measures

As noted before, the goal of the decision maker is to maximize its accumulated reward.

In this section we describe the way we evaluate the performance of the agent in achieving

this goal. Generally, we do not evaluate the performance of the agent by the magnitude

of the reward it accumulates as the game goes on, since we are not able to give theoretical

guarantees and the magnitude of the reward also affects in the plots for visualization. On

the other hand, to maximize the reward is equivalent to minimize the regret, therefore,

we could measure the performance by the cumulative regret.

Regret is the difference between the maximum cumulative expected reward the deci-

sion maker could obtain and the cumulative expected reward the decision maker actually

obtains up to T time steps, which is defined as

RT =
T∑
t=1

max
k∈K

µk − µkt (1.5)

Note that the optimal arm k? that results in the maximum reward, for any time step t,

could vary at different time steps.

In the stochastic setting, since rewards are random, in the long run the best arm be-
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comes the arm with largest expected reward

k? = argmax
k∈K

µk (1.6)

Accordingly, in the stochastic setting, as common in the literature we redefine the regret

to be

RT =
T∑
t=1

µk? − µkt (1.7)

1.5 Common Principles

1.5.1 Optimism in Face of Uncertainty

A natural and successful way to design a bandit algorithm is the Optimism in the Face

of Uncertainty (OFU) principle. The basic idea is to maintain a confident interval for every

arm, or a confidence set of parameters for every arm in multi-dimension case. The confi-

dence interval of every arm is separately determined based on past observations. At each

time step, the decision maker picks the arm with the highest value of estimated mean plus

the exploration bonus, where the exploration bonus is the confidence interval of the arm.

By making decisions optimistically, the decision maker is able to balance off exploitation

and exploration. The intuition is that the more an arm is played, the confidence interval

of the arm shrinks with more observations, therefore, the decision maker can identify the

arm as the sub-optimal arm or not. Exploitation is how the decision maker exploits the

observations and estimated means of every arm to make decisions. Exploration is how

the decision maker explores by choosing the arms that might potentially be the optimal

arm but do not have the highest estimated means at the current time step. The OFU prin-

ciple elegantly solves the exploration-exploitation dilemma inherent in the problem.

One famous algorithm, representative of OFU, is Upper Confidence Bound (UCB)

12



Algorithm 2: UCB1 2 [Auer et al., 2002]

1

Input: Time horizon T , K number of arms with unknown parameters of reward distribu-
tion

2 for each time step t := 1, 2, 3, ..., T do
3 if t ≤ K then
4 Play an arm kt from K with index t ∈ {1, 2, . . . , K}
5 else
6 Compute µ̃k ← µ̂k + 2Cp

√
lnN
Nk

for k ∈ K;

7 Choose the arm kt = argmaxk∈K µ̃k
8 end
9 The decision maker observes the reward Yk,t of the arm kt;

10 Update the arm kt with µ̂k ← (µ̂kNk + Yk,t)/(Nk + 1) and Nk ← Nk + 1

11 end

[Auer et al., 2002]. Note that in Algorithm 2, the decision maker chooses an arm

kt = argmax
k∈K

µ̂k + 2Cp

√
lnN

Nk

, (1.8)

where Cp is the fixed exploration constant chosen by the algorithm, N is the total number

of times of all arms played till this time step, Nk is the total number of times of arm k

being played till t-th time step, and µ̂k is the estimated mean of arm k

µ̂k =

∑
t 1{kt = k}Yk,t

Nk

, (1.9)

where 1 is the indicator function to represent whether arm k is selected at time step t or

not.

1.5.2 Thompson Sampling

Thompson Sampling (TS), also known as posterior sampling and probability match-

ing, was first introduced for allocating experimental effort in two-armed bandit problems

arising in clinical trials in [Thompson, 1933]. The basic idea is as follows: assuming a

2Partial information feedback is given by the environment. We will assume partial information feedback
in the following when the decision maker is allowed to choose one arm at any time step.
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simple prior distribution on the expected means of the reward distributions of every arm.

At every time step, the decision maker chooses an arm based on its posterior probability

of being the best arm. The intuition is that the more an arm being played, the less un-

certainty the play holds for that arm, therefore, if the arm appears to be the sub-optimal

arm, it would not be played later, vice versa. Algorithm 3 has shown TS for Gaussian

bandits. The difference between UCB and TS is the belief of an arm when the decision

maker makes the decision of choosing the arm.

Algorithm 3: TS for Gaussian Bandits [Durand and Gagné, 2017]
Input : Time horizon T , K number of arms with unknown parameters of

reward distribution
Initialization: Initialize all arms k ∈ K with Nk = 0, µ̂k = 0

1 for each time step t := 1, 2, 3, ..., T do
2 if t ≤ K then
3 Play an arm k with index t ∈ {1, 2, . . . , K}.
4 else
5 Sample all arms µ̃k ∼ N (µ̂k,

1
Nk+1

) for k ∈ K
6 Choose the arm kt = argmaxk∈K µ̃k
7 end
8 The decision maker observes the reward Yk,t of the arm kt
9 Update the arm kt with µ̂k ← (µ̂kNk + Yk,t)/(Nk + 1) and Nk ← Nk + 1

10 end

1.6 Linear Bandits

In the linear bandit problems, likewise in context-free MAB, a decision maker chooses

an arm at t-th time step, and receives a stochastic reward. However, the expected value

of this stochastic reward is an unknown linear function of the arm choice. Same as in

all bandit problems, the decision maker seeks to maximize the cumulative reward over

T time steps. The stochastic context-free MAB can be seen as a special case of the linear

bandit problem: the set of available arms at t-th time step is the standard basis ei for the

Euclidean space Rd, i.e. the vector ei is the vector with all zeros except for a one in the

i-th coordinate. In this scenario, all arms are independent of each other, and the reward

14



depends only on a single parameter as in the context-free case [Auer et al., 2002, Dani

et al., 2008, Rusmevichientong and Tsitsiklis, 2010]. Likewise in context-free MAB, there

are also algorithms that utilize OFU and TS strategies for linear bandits [Abbasi-Yadkori

et al., 2011, Agrawal and Goyal, 2013, Abeille et al., 2017].

Algorithm 4: General Linear Bandit Framework
Input: Time horizon T , a set of arms x ∈ X

1 for each time step t := 1, 2, 3, ..., T do
2 Observe the arm space Xt.
3 Choose the rewards ∀x ∈ Xt.
4 Choose an arm Xt, and sends it to the environment.
5 Observe the reward Yt.
6 Update the estimated parameter θ̃t.
7 end

1.6.1 Linear Bandits with OFU

Algorithm 4 shows the general framework of linear bandits. Note that in linear bandit

case, the notation for arms are different than in the context-free case. At t-th time step, a

decision maker first observes the arm space Xt ⊆ Rd as well as every arm x ∈ Xt. Though

discrepancies exist in different works, the arm space could stay unchanged or change at

any t-th time step. If the arm space stays unchanged, Xt = Xt′ ∀t, t′ = 1, 2, 3, ..., T . Same as

in the context-free MAB, the environment then chooses the rewards for every arm x ∈ Xt

by

Yx,t = 〈x, θ?〉+ εt, (1.10)

where θ? ∈ Rd is an unknown parameter to the decision maker, and εt is a noise parameter,

defined in previous sections. The decision maker then chooses an arm Xt, and receives a
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reward Yt, for simplicity, defined as

Yt = 〈Xt, θ?〉+ εt, (1.11)

where εt satisfies the tail constraints, with E[εt|X1:t, ε1:t−1] = 0. Note that the capitalized

notation means they represent numerical values, after the decision maker makes the deci-

sion at every time step. The strategy to maximize the expected cumulative rewards over

T time steps given by
∑T

t=1〈Xt, θ?〉 is to an estimate θ̃t of the unknown parameter with

observations from the environment. To use the existing information, the decision maker

can first construct a least-squares estimate of θ? given as follows

θ̂t = (XT
1:tX1:t + λI)−1XT

1:tY 1:t, (1.12)

where X1:t is the matrix whose rows are XT
1 , X

T
2 , X

T
3 , ..., X

T
t , Y 1:t = (Y1, ..., Yt)

T , and λ is

the regularization parameter. As we mentioned before, there are also algorithms devel-

oped using OFU and TS for linear bandits. Optimism in the Face of Uncertainty Linear

Bandit (OFUL) is the state-of-the-art algorithm with theoretical guarantees for linear ban-

dits [Abbasi-Yadkori et al., 2011]. Let V = λId, define

Vt = V +
t∑

s=1

XsX
T
s (1.13)

||x||V t
=

√
xT Vt x (1.14)

Assume ||θ?||2 ≤ S. Then, for any δ > 0, with probability 1− δ,

βt = R

√
2 log(

det(Vt)1/2 det(λI)−1/2

δ
) + λ1/2S, (1.15)
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whereR is the standard deviation for theR-sub-Gaussian noise εt. The arm then selection

according to the estimated θ̃t follows

Xt = argmax
x∈Xt

〈x, θ̂t〉+ βt · ||x||V̄t , (1.16)

which is equivalent to

Xt = argmax
x∈Xt

〈x, θ̃t〉 (1.17)

1.6.2 Linear Bandits with Thompson Sampling

Linear Thompson Sampling (LinTS), however, employs another strategy [Agrawal

and Goyal, 2013, Abeille et al., 2017]. As in context-free case, we will illustrate the in-

ference process for Linear Gaussian Bandits. The estimate of unknown parameter θ̃t is

selected through TS, in linear bandits, Multivariate Normal distribution (MVN ) is used

instead of Normal distribution

θ̃t ∼MVN (θ̂, v2Vt
−1
), (1.18)

where θ̂ follows as Equation 1.12, Vt follows as Equation 1.13, and v is a scalar parameter

of the covariance matrix. Although in order to obtain theoretical guarantees, v is sug-

gested to be R
√
9d ln T

δ
with confidence 1 − δ, or R

√
9d ln t

δ
if T is not known [Agrawal

and Goyal, 2013]. Note thatR is defined same as Equation 1.15. However, this suggestion

of v for bounding the regret is indeed loose compared to OFUL, and implementations

of real applications often choose v = 1 to outperform OFUL, though without theoretical

guarantees. The arm selection then follows Equation 1.17.

In the stochastic setting, since rewards are stochastic with noise, the best arm at every
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t-th time step can vary, therefore, the best arm at t-th time step is denoted as

x?t = argmax
x∈Xt

〈x, θ?〉 (1.19)

Accordingly, in the stochastic setting, as common in the literature we redefine the regret

to be

RT =
T∑
t=1

〈x?t , θ?〉 − 〈Xt, θ?〉 =
T∑
t=1

〈x?t −Xt, θ?〉 (1.20)

1.7 Combinatorial Bandits

In combinatorial MAB problems, the decision maker can choosem arms, wherem ≥ 1,

and receive feedback according to different types of feedback chosen3, as well as the re-

ward of the super arm composed of the m individual arms. The reward function is un-

known to the decision maker. At each time step t ∈ N, the decision maker chooses the

super arm St, composed of m individual arms, denoted as {kt}kt∈St , which will be played

in the time step t, based on the feedback from its previous interactions with the envi-

ronment. The decision maker then observes the outcomes of depending on the feedback

type chosen, as well as the reward of the super arm R(St) through the reward function

R(·). After obtaining the information, the decision maker updates the estimated outcome

for each arm k ∈ K. The goal of the decision maker is to maximize the cumulative re-

ward of its choices of selected super arms after T time steps, i.e.,
∑T

t=1R(St) [Neu and

Bartók, 2013, Sankararaman and Slivkins, 2017, Combes et al., 2015, Cesa-Bianchi and Lu-

gosi, 2012]. Note that if m = 1, MAB is a special case of combinatorial MAB.

At every t-th time step, a decision maker selects a feature vector of the super arm St,

Mt from a finite set M ⊂ {0, 1}K , where K is the size of the arm set, equivalent to |K|.

An arm k ∈ K chosen in the super arm St makes the component Mi = 1, where i is the

3As we introduced in previous sections, there are full information feedback, semi-bandit feedback, and
bandit feedback.
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Algorithm 5: General Combinatorial MAB Framework
Input: Time horizon T , K number of arms with unknown parameters of reward

distribution
1 for each time step t := 1, 2, 3, ..., T do
2 Choose a super arm St, and sends it to the environment.
3 Observe the reward as well as feedback of individual arms depending on the

feedback chosen.
4 Update the estimated expectation vector µ̂.
5 end

index of the arm in the arm set. Let µ = (µ1, µ2, µ3, ..., µK) be a vector of expectations of

all arms k ∈ K. The expectation vector µ is also unknown to the decision maker. We

assume all super arms S ∈ S consist of the same number m of individual arms so that

||M ||1 = m ∀M ∈ M. The reward function need not be linear in this case. One example

of linear reward function taking input as a super arm S from the super arm set S , as well

as constructed feature vectorM , could be

E[R(S)] =
K∑
i=1

Miµi (1.21)

One example of non-linear reward function, known as max function, is as follows

E[R(S)] = max
i∈[K]

Miµi (1.22)

Algorithm 5 shows the general combinatorial MAB framework. One thing to note is that

in full information bandit setting, the outcomes of all individual arms would be shown

to the decision maker, in the stochastic case, with noise. In the semi-bandit setting, the

outcomes of arms with expectation µi, in the stochastic case, with noise, only would be

shown to the decision maker when Mi = 1. In the bandit setting, there would be none

of the outcomes of individual arms shown to the decision maker. It is worth to note

that there are numerous works focusing on semi-bandit setting, mainly to aim to obtain

accurate estimated expectation vector µ̂ in order to maximize the reward of the selected

super arm, based on the outcomes observed from individual arms in the selected super
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arm at every t-th time step, instead of the reward received by selecting the super arm.

In the stochastic setting, since rewards are stochastic with noise, in the long run the

best arm becomes the arm with largest expected reward

S? = argmax
S∈S

R(S) (1.23)

Accordingly, in the stochastic setting, as common in the literature we redefine the regret

to be

RT =
T∑
t=1

R(S?)−R(St) (1.24)
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Chapter 2

Multivariate Bandits

2.1 Upper Confidence Bounds applied to Trees

UCB1 has been one of the most popular methods in bandit family for decades. Upper

Confidence Bounds applied to Trees (UCT) algorithm adapts UCB1 in tree structure as

treating the choice of child node as a multi-armed bandit problem, the value of a child

node is the expected reward approximated by the Monte Carlo simulations, and hence

these rewards correspond to random variables with unknown distributions [Kocsis and

Szepesvári, 2006, Kocsis et al., 2006, Kaufmann and Koolen, 2017]. Therefore, it is a

promising candidate to address the exploration-exploitation dilemma in Monte Carlo

Tree Search (MCTS): every time a node (action) is to be selected within the existing tree,

the choice can be modelled as a MAB problem.

To illustrate a UCT algorithm, consider a tree search optimization problem on a uni-

form tree of depth D where each node has K children1. A reward distribution Dl is as-

signed to each leaf node l2. The goal is to find the path, sequence of nodes starting from

the node to be selected at initial state s0 to a leaf node at terminal state sT , with highest

1Generally, different nodes are allowed to have different numbers of children nodes in a search tree. It
is only for illustration here.

2In this case, there are KD such leafs.
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Algorithm 6: Bandit Algorithms for Tree Search [Coquelin and Munos, 2007]
Input: Time horizon T , KD number of leaves with unknown parameters of reward

distribution
1 for each time step t := 1, 2, 3, ..., T do
2 Set vd to v0.
3 Start running trajectory.
4 for depth d := 1, 2, ..., D do
5 Compute the B-value for every children node v′ ∈ C(vd).
6 Select the node v′ with highest B-value.
7 Set selected children node v′ to vd.
8 end
9 Reach the leaf lt ← vD.

10 End trajectory.
11 Receive reward rt ∼ Dlt .
12 Update the estimates of the nodes visited in the trajectory.
13 end

mean value µl, where the mean value of every leaf node is defined as

µl = E[Dl], (2.1)

and the optimal can result in the highest mean value across all leaf nodes, with the so-

called optimal leaf node,

µl? = E[Dl? ] (2.2)

Define the value of any node v, excluding the leaf nodes, as

µv = max
v′∈L(v)

µv′ , (2.3)

where L(v) denotes the set of leaves that belong to the branch originating from node v.

At every t+1-th time step, the decision maker selects a leaf lt from the tree and receives a

reward rt ∼ Dlt3, which enables backpropagation of the mean value µv and the visit count

3It can also be written as rt = µlt + εt, where εt ∼ N (0, σ2) if Dlt is a Gaussian distribution with mean
µlt and variance σ2 as N (µlt , σ

2).
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Nv for the node v for every node v such that lt ∈ L(v) 4, where L(v) denotes all nodes that

can be reached by node v through a trajectory starting from the node v. Therefore, the

cumulative regret over T time steps is defined as

RT =
T∑
t=1

µl? − µlt (2.4)

The way the leaf is selected is by following a path starting from the root node at initial

state and such that from each node v along the path, the next selected node v′ is the

one with highest B-value among children nodes, where the B-value is not fixed, nor

guaranteed to be the best across all domains. The first work proposed UCT has suggested

B-value, using UCB1, to be defined as [Kocsis and Szepesvári, 2006]

Bv′ = µ̂v′ + 2C

√
lnNv

Nv′
, (2.5)

where C = 1/
√
2 was shown to satisfy the Hoeffeding inequality with rewards in the

range [0, 1] [Kocsis et al., 2006], Nv′ is the number of paths that went through node v′ till

time step t, defined as5

Nv′ =
∑
t

1{lt ∈ L(v′)} (2.6)

µ̂v′ is the empirical average of rewards obtained from leaves originating from node v′, i.e.,

µ̂v′ =

∑
t 1{lt ∈ L(v′)}rt

Nv′
(2.7)

4Details are illustrated in the Algorithm 6
5Nv can also be defined in a similar way.
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Other choices of B-values could also be the UCB(δ) proposed in [Abbasi-Yadkori et al.,

2011]. Assume the noise εt is conditionally 1-sub-Gaussian, with probability 1− δ,

Bv′ = µ̂v′ +

√
(1 + 1

Nv′
) ln(K

√
Nv′ + 1)/δ

2Nv′
, (2.8)

where K is the number of children nodes of the parent node v.

As shown in Algorithm 6, a trajectory is a sequence of nodes from the root to a leaf,

where at each node v, the next node is chosen as the (or one) child having the highest B

value among its children C(v). A reward is received at the leaf. After a trajectory is run,

the decision maker then updates the B-value and number of times being visited for the

nodes in the trajectory.

The intuition for the UCT algorithm is that at the state of a given node v, there are

K possible arms corresponding to the children nodes, and the use of a UCB-type of ban-

dit algorithm should balance exploitation-exploration trade-offs and select the best arm

given noisy rewards samples.

2.2 Multivariate Optimization

Multivariate optimization means optimization of a scalar function of a several vari-

ables [Boyd and Vandenberghe, 2004]:

y = P (x) (2.9)

and has the general form:

min
x
P (x) (2.10)

where P (x) is a nonlinear scalar-valued function of the vector variable x = (x1, x2, x3, ..., xn).
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2.3 Motivates to Study Multivariate Bandits

Factorial design (Section 1.1) has caught our attention since there are many necessi-

ties in real world problems as existing algorithms do not provide a satisfactory solution

to those problems. Previous works have shown contextual MAB has outperformed tra-

ditional Randomized Controlled Trials (RCT) and non-contextual MAB when the target

population is divided into subgroups [Shaikh, 2019]. In addition, although massive works

have done in full information feedback and semi-bandit (partial information) feedback,

there exists few works about bandit feedback in bandits literature (Section 1.3). It is true

that in full information feedback and semi-bandit feedback, theoretical guarantees for ex-

isting algorithms are easier to achieve, and in bandit feedback, most algorithms proposed

in other two types of feedback are not able to achieve logarithmic performance. Bandit

algorithms have been popular for online learning for decades. We will show in the fol-

lowing sections that to solve MVB problems, we can use online methods such as bandit

algorithms constructed in specific structure.

2.4 Multivariate Bandit Problems

As shown in Algorithm 7, given a vector variable x, at every t-th time step, the decision

maker selects the arm kxi ∈ Kxi for every variable xi ∈ x, where Kxi is the set of choices

the decision maker is allowed to choose from for variable xi. The decision maker then

stores the choices in the decision set Dt, and sends Dt to the environment. The decision

maker is assumed to be hidden from the reward function R(·), henceforth, the decision

maker has to infer the estimates from the reward rt received. One thing to note that here

we assume the numerical values of all choices for every xi ∈ x are discrete. If the values

are continuous, we can split the continuous values in certain intervals, and treat every

interval as a discrete numerical value. Like we stated in Section 1.7, the reward function

R(·) does not have to be linear, nor the decision maker tries to reconstruct the reward

function, but the decision maker rather seeks to maximize the reward, or equivalently,
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Algorithm 7: General Multivariate Bandit Framework
Input: Time horizon T , vector variable x

1 for each time step t := 1, 2, 3, ..., T do
2 Dt ← ∅
3 for every xi ∈ x do
4 Make choice for xi by choosing kxi from the set Kxi .
5 Store the choice in the set Dt by Dt ∪ {kxi}.
6 end
7 Send Dt to the environment.
8 Receive the reward rt.
9 Update the estimates.

10 end

minimize the regret, with the collected observations from previous time steps by selecting

the optimal decision set D?. The cumulative regret obtained till time step t is defined as

RT =
T∑
t=1

R(D?)−R(Dt) (2.11)

Note that to solve the selection problem for decision set D, we need an efficient algo-

rithms, i.e. Linear TS and UCT. Algorithm 7 only showed a new framework of bandit,

MVB, where a substantial number of real applications can fit in the framework naturally.

For example, the factorial experiments we shortly introduced in Section 1.1 can be solved

within the General MVB Framework with an efficient algorithm.

2.5 Connection to Combinatorial MAB

What distinguishes MVB from combinatorial MAB is that combinatorial MAB opti-

mize subset selection while multivariate bandits optimize by considering variable selec-

tion [Hill et al., 2017], i.e., combinatorial MAB considers the effect (beneficial or not) to

include this individual arm in the super arm versus exclude among all available arms,

however, MVB gauges that which arm of a specific variable can lead to a greater reward.

Nevertheless, the difference behind the intuition of the two frameworks does not affect
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the fact that we could still use combinatorial MAB algorithms to solve MVB problems,

though inefficient.

Combinatorial MAB with bandit feedback can be treated as a linear bandit problem.

Like in Section 1.7, we can treat every possible super arms6, along with their feature vec-

tor, as an arm in linear bandit problems (Section 1.6). Therefore, we could solve the prob-

lem by constructing an estimated underlying parameter. There are two issues here: one

is that we have to consider all possible choices, which results in computationally expen-

sive problems in runtime, especially in real applications. Although we could apply ker-

nel methods to reduce the dimension of the feature vector [Valko et al., 2013, Jun et al.,

2017,Filippi et al., 2010], due to the fact that the reward function is hidden and the reward

function might not be linear, the number of choices needed to be considered would not

significantly decrease as the decision maker has to extensively sweep over the arm space

to avoid missing the optimal arm.

2.6 MVB Problems in Tree Structure

As shown in Algorithm 7, we can employ the tree search setting so that the sequential

decision tree is explicitly represented and the goal would be to optimize the path in the

tree. Figure 2.1 has shown an example of how MVB can be formulated in tree structure,

corresponded with Algorithm 7. The decision process is analogous to factorial experi-

mental design, and can be in an online setting, if online algorithms are used, i.e. bandit

algorithms. In this example, there are three factors, each with two choices, also called 3

factors × 2 choices per factor factorial design. Note that some questions may be raised due

to the assumption on the tree structure. In practice, sometimes the orders of factors is pre-

defined by the problem, i.e. graphical design for mobile applications and adaptive health

6In MVB problems, every super arm mentioned here denotes which arm selected of every variable (fac-
tor), as a large binary vector, signaling whether selected or not. The super arm is equivalent to the decision
set in MVB problems.
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intervention optimization. In this case, we would not be worried that the assumption is

incorrect, or deterministic.

Figure 2.1: MVB in Tree Structure

2.7 Linear v.s. Non-Linear Reward Function

In Section 2.5, we shortly introduce the connection between combinatorial MAB and

MVB, and how we can use linear bandit algorithms to solve combinatorial MAB with

bandit feedback, which is equivalent to solving MVB problems. As shown in Figure 2.1,

assume a search tree with underlying parameters θ? = (θ(1), θ(2), ..., θ(14)), which would

affect the reward by making different decisions at every state, i.e, at state s1, selecting

between the two choices result in different influence in the reward since only θ(1) or θ(2)

would affect the reward received, but not both. In combinatorial bandit settings, to solve

the problem, an estimated parameter θ̃ is constructed based on collected information. At

every time step, a super arm S is selected from the super arm space, associated with its

feature vector M . In this example, a feature vector M for super arm S, composed of left

decisions at every state in the search tree, could be [1 0 1 0 0 0 1 0 0 0 0 0 0 0]. Therefore,
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the cumulative expected regret is defined as

RT =
T∑
t=1

E[R(S?)]− E[R(St)], (2.12)

where S? is the optimal super arm that could achieve zero regret, and St is the super arm

selected at time step t.

If the reward function is defined same as Equation 1.21, a linear reward function with

all weights equal to one, the reward is a linear combination of the feature vector and the

underlying parameter θ?:

E[R(S)] = 〈M, θ?〉 (2.13)

If the reward function is non-linear, more common than linear reward function in practice,

same as Equation 1.22, the max reward function is defined as

E[R(S)] = max
i∈{1,2,...,|θ|}

Mi · θ(i)
? (2.14)

Furthermore, the cumulative regret is defined as

RT =
T∑
t=1

R(S?)−R(St) (2.15)

2.8 Tree Search Bandit Algorithm for MVB

Bandit Algorithm for Tree Search (BATS), as a successful algorithm in board games,

seems to be a good choice than combinatorial MAB with bandit feedback in MVB prob-

lems. The decision made for every specific variable can be seen as a visited node in the

trajectory at every time step. Compared to combinatorial MAB, where each time the deci-

sion maker has to consider a significant number of super arms, using BATS, the decision

maker should not consider a super arm, composed of decisions needed to be made for
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several variables, but rather one variable at a time. With BATS, the computation can be

significantly reduced. Since the information is backed up to every visited node in the

trajectory when reaching the leaf, the information update is more efficient than in com-

binatorial MAB, where intuitively every available choice for every decision needs to be

updated, especially, in linear bandits, it is considerably expensive to update the mean

value matrix and the covariance matrix, compared to updating scalar values in BATS.

(a) SMS over Email (b) Week over Day (c) Update nodes visited

Figure 2.2: One episode of tree search

As shown in Figure 2.2, it is the simplest example of tree search for factorial exper-

iments. Instead of obtaining the estimated rewards of every arm in Linear TS, using

Algorithm 6, tree search presents to be a much more efficient method.
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Chapter 3

Experiments

3.1 Formations

3.1.1 Standard Bandits

Standard bandits formation follows MAB problem. Details of MAB can be referred to

Section 1.2. Treating every possible treatment combination as an arm, when the number of

factors or choices per factor increases, the number of arms increases exponentially. Given

M factors and N choices per factor, there exists NM arms in the standard bandit setting.

3.1.2 Linear Bandits

Linear bandits formation is a special case of MAB problem, and it makes an assump-

tion on the linear reward function. This assumption is brittle, since the reward function

is unknown and making the assumption is dangerous. Details of linear bandits can be

referred to Section 1.6. In linear bandits setting, we assume there is an underlying pa-

rameter θ?, whose vector dimension is the number of factors multiplied by the number of

choices per factor. For example, in Figure 2.2, the dimension of the estimated parameter θ

is six. The feature vectors of arms are binary vector, indicating whether or not the choice

is made. Even the assumption of linearity is allowed to be made, computation-efficiency
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is also a problem in linear bandits setting. GivenM factors andN choices per factor, there

exists NM arms with binary feature vectors, of length M×N encoding the choice selected

for each factor in linear bandits setting.

3.1.3 Tree Search Bandits

In tree search setting, we are able to get rid of the linearity assumption. In this setting,

the sequential decision tree is explicitly represented and we aim to optimize the path in

the tree. Details of BATS can be referred to Section 2.1. We use a popular algorithm, UCT.

UCT treats each decision node as a separate standard bandit problem, picking the choice

according to the UCB. In tree setting, computation-efficiency can be easily achieved.

3.2 UCT with Tighter Concentration Bounds

(a) 3 factors × 2 choices per factor (b) 3 factors × 2 choices per factor

Figure 3.1: UCT v.s. UCT-Laplace

In this section, we will show that using the tighter concentration bounds proposed

in [Abbasi-Yadkori et al., 2011] can significantly improve the performance of UCT for tree

search proposed in [Kocsis and Szepesvári, 2006, Kocsis et al., 2006].
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(a) 3 factors × 2 choices per factor

(b) 3 factors × 6 choices per factor

Figure 3.2: Varying Number of Choices per Factor

We tested the algorithms in less noisy and noisier environments, with standard devi-

ation of noise R equal to 0.1 and 0.5.

As Figure 3.1 shows, UCT and UCT-Laplace are robust to variance noise. UCT-Laplace,

based on tighter concentration bounds, outperform UCT with faster convergence.

3.3 Varying Number of Choices per Factor

In this section, we will show that different numbers of choices per factor influence the

performance of algorithms under standard bandit setting, linear bandit setting, and tree

search bandit setting. We will compare the the best-performing algorithm in each setting.
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In standard bandit setting, we select TS for MAB. In linear bandit setting, we select LinTS.

In tree search bandit setting, we select UCT-Laplace.

As Figure 3.2 shows, when the number of arms is small, in Figure 3.2a, TS for MAB

is still able to perform well. Although the noise increases, it seems less robust. However,

when the number of arms increases, in Figure 3.2b, LinTS shows to be better than TS

for MAB since it employs the mutual information, on the other hand, algorithms under

standard bandit setting do not.

In both cases, algorithms under tree bandit setting can capture the underlying tree

structure and shows its robustness and satisfactory performance.

3.4 Varying Number of Factors

(a) 6 factors × 2 choices per factor (b) 6 factors × 2 choices per factor

Figure 3.3: Varying Number of Factors

As shown in Figure 3.3, as the number of factors increase, TS under standard bandit

setting does not perform well any more. UCT-Laplace is still robust to variance noise

and outperform the other two algorithms. At this point, we can conclude that tree search

bandit setting can capture the sequential decision-making tree structure and with little

assumption, the formation is better than standard bandit setting and linear bandit setting.
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(a) 3 factors × 2 choices per factor

(b) 3 factors × 6 choices per factor

Figure 3.4: Max reward function

3.5 Non-Linear Reward Function

In this setion, we will test performance under non-linear reward function, such as max

reward function, to show how LinTS breaks in a general setting.

In Figure 3.4, we compare the less and more number of arms under a non-linear re-

ward function. As Figure 3.4a shows, similarly as in Figure 3.2, when the number of arms

is small, TS under standard bandit setting seems sufficient for the problem. LinTS, with

no doubt, cannot capture the non-linearity of the rewards received at all. As the num-

ber of arms increases, in Figure 3.4b, UCT-Laplace under tree bandit setting seems to be

robust and perform well, compared to LinTS and TS.

35



(a) 6 factors × 2 choices per factor (Independence)

(b) 6 factors × 2 choices per factor (Dependence)

Figure 3.5: Independence v.s. Dependence

Using the experiments, we show that in non-linear reward setting, algorithms under

linear bandit formulation appear to show the sub-optimal performance. If the number of

arms is large, algorithms under tree search bandit setting seems to be a good choice due

to the capability to capture the tree structure without a strong assumption.

3.6 Independence of Factors

In all experiments all this section, we assume there is a dependence among factors.

In other words, the choices of the preceding factors affects the choices of the following

factors. The choices might be different following different choices made previously.
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If we assume there is independence among factors, it would be beneficial to linear

algorithms due to the easiness of computation. Instead of a geometric sum of the number

of choices per factor as the feature vector dimension, the feature vector dimension would

be the product of number of factors and number of choices per factor1.

In this section, we will show two experiments under one the assumption is held and

under other not.

As Figure 3.5 shows, in Figure 3.5a, when the independence assumption is not broken

in the environment, in other words, the decision for preceding factors would not affect

the choices of the following factors, Independent LinTS under linear bandit formation

seems to be comparable with the algorithm under tree search bandit formulation. We can

conclude that in the independent setting, it is worth to use Independent LinTS.

However, in Figure 3.5b, when the assumption of independence of factors is broken,

the performance of Independent LinTS is not satisfactory. It is even not comparable with

the worst-performing algorithm, TS under standard bandit setting. What is more, we

observe that algorithm under tree search bandit is consistently robust across all different

settings.

1We assume the number of choices per factor is same for all factors here.
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[Kocsis et al., 2006] Kocsis, L., Szepesvári, C., and Willemson, J. (2006). Improved monte-

carlo search. Univ. Tartu, Estonia, Tech. Rep, 1.

[Loiselle and Ahmed, 2017] Loiselle, C. G. and Ahmed, S. (2017). Is connected health

contributing to a healthier population? Journal of medical Internet research, 19(11).

[Montgomery, 1995] Montgomery, D. C. (1995). Design of experiments. New York, pages

225–364.
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