

Bandits Algorithms for Factorial Design

Yutong Yan

joint work with

Audrey Durand, Joelle Pineau

Outline

- Factorial Experiment
- Multi-armed Bandits
- Upper Confidence Bound vs Thompson Sampling
- Linear Bandits
- Bandits in Tree Search
- Proposed UCT-Laplace
- Results

Factorial Experiment:

- An observation provides partial information on several configurations
- 3 fonts X 5 themes X 5 colors = 75 configurations
- A single run of configuration (Font=3, Color=4, Theme=2) ... gives partial information on all configurations with Color=4, Theme=2, or Font=3
- Each observation teaches us something about 43 configurations

Multi-armed bandits (MAB)

- Sequential experimental design
- Produces the reward under an uncertain payoff distribution

Multi-armed bandit: Problem statement

Algorithm 1: MAB

Input: Action set \mathcal{A}

- 1 for each time step t := 1, ..., T do
- **2** Select a_t from \mathcal{A}
- **3** Get reward $r_t \sim \mathcal{D}_{a_t}$
- 4 Update a_t using r_t

5 end

Maximize $\sum_{t=1}^{T} r_t$

• By choosing optimal action:

$$a_\star = rg \max_{a \in \mathcal{A}} \mu_a$$
 , where

$$\mu_a = \mathbb{E}[\mathcal{D}_a]$$

• Minimize expected regret:

$$\sum_{t=1}^{T} [\mu_{a_{\star}} - \mu_{a_t}]$$

Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (OFU)
- Pick the arm with the highest upper confidence bound
- [Auer *et al.*(2002)] showed UCB satisfies optimal rate of exploration [Lai and Robbins(1995)]
- The most popular choice is UCB1:

$$B_{a,t} = \hat{\mu}_{a,t} + 2C\sqrt{\frac{\ln t}{N_{a,t}}}$$

Thompson Sampling (TS)

- Thompson sampling was first induced by [Thompson (1933)]
- Bayes theorem: $P(\theta | r_a^1, ..., r_a^n) \propto P(\theta) P(r_a^1, ..., r_a^n | \theta)$
- Sample from posterior distribution (conditioned on the observed rewards) for arm **a**: $\tilde{\mu}_a \sim P_a$
- Selection rule: $\underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \tilde{\mu}_a$
- Example: Gaussian bandits sampling:

$$\tilde{\mu}_{a,t} \sim \mathcal{N}(\hat{\mu}_{a,t}, \frac{1}{N_{a,t}+1})$$

UCB vs TS

- Deterministic
- Has theoretical guarantees

- Probabilistic
- Better empirical performance

Factorial Experiment as Bandits

• MAB:

- Each configuration as an arm
- K=4 arms

Linear Bandits

Algorithm 2: Linear bandits

- 1 for each time step t := 1, ..., T do
- **2** Observe feature set \mathcal{X}_t
- **3** Select x_t from \mathcal{X}_t

4 Get reward
$$r_t = \langle \theta_\star, x_t \rangle + \epsilon_t$$

5 Update $\hat{\theta}$ using r_t and x_t

6 end

- Maximize $\sum_{t=1}^T r_t$
- By choosing optimal action:

$$x_{\star} = \underset{x \in \mathcal{X}_{t}}{\arg \max} \underbrace{\langle \theta_{\star}, x \rangle}_{\mu_{x}}$$

• Minimize expected regret:

$$\sum_{t=1}^{T} [\mu_{x_{\star}} - \mu_{x_t}]$$

• Linear Thompson Samping (LinTS):

$$\tilde{\theta}_t \sim \mathcal{MVN}(\hat{\theta}_t, v^2 \overline{V}_t)$$

Factorial Experiment as Bandits

- MAB:
 - Each configuration as an arm
 - **K=4 arms**
- Linear Bandits:
 - Binary feature vector dimension *d*=4
 - [email(no), SMS(yes), day(no), week(yes)]
 [0] 1
 0
 1

Bandits Algorithms for Tree Search (BATS)

Algorithm 3: BAST

```
1 for each time step t := 1, 2, 3, ..., T do
        v_d \leftarrow v_0
 \mathbf{2}
        Start running trajectory
 3
        for depth d := 1, 2, ..., D do
 4
             Select v' \in \mathcal{C}(v_d)
 5
            v_d \leftarrow v'
 6
        end
 7
        Reach the leaf l_t \leftarrow v_D
 8
        End trajectory
 9
        Receive reward r_t \sim \mathcal{D}_{l_t}
10
        Update nodes visited in the trajectory
11
12 end
```


Factorial Experiment as Bandits

MAB:

- Each configuration as an arm
- K=4 arms

Linear Bandits:

- Binary feature vector dimension is 4
- [email(no), SMS(yes), day(no), week(yes)]

0

1

• BATS:

Ο

• 2 factors and 2 choices per factor

1

- 2 x 2 x 2 factorial design
- Tree Depth D=2

0

- At depth *d*=1, email or SMS
- At depth *d*=2, every day or every week

Recall: Factorial Experiment

- 3 fonts X 5 themes X 5 colors = 75 configurations
- MAB: K=75 arms
- LinTS: Feature vector dimension=13
- BATS: Tree depth D=3
 - 2 factors with 5 choices per factor, 1 factor with 3 choices per factor
 - 3 X 5 X 5 factorial design

Upper Confidence Bound applied to Trees (UCT)

- UCB1 in Tree Search!
- Compute the *B*-value for every children node $v' \in \mathcal{C}(v)$
- **B**-value in tree search:

$$B_{v',t} = \hat{\mu}_{v',t} + 2C\sqrt{\frac{\ln N_{v,t}}{N_{v',t}}}$$

UCT example: medical app

Benefits of UCT

- Computational-efficient
- Information-sharing
- Theoretical guarantees
- Weaker assumption on unknown reward function

UCT-Laplace

- UCB-Laplace has been proved in [Abbasi-Yadkori *et al.* (2011)] using the Laplace method (method of mixtures for sub-Gaussian r.v.)
- Explicit control of success probability
- In UCT-Laplace, *B*-value of a children node is:

$$B_{v',t} = \hat{\mu}_{v',t} + \sqrt{\frac{(1 + \frac{1}{N_{v',t}})\ln(K\sqrt{N_{v',t} + 1}/\delta)}{2N_{v',t}}}$$

Experiments

- Algorithms to be compared:
 - **MAB: TS**
 - Linear bandits: LinTS (tuned)
 - BATS: UCT and UCT-Laplace
- Experiments were run in different environments to verify the robustness, optimality, and fast-convergence of UCT-Laplace:
 - Two settings with 2 and 6 choices per factor
 - Linear and non-linear reward function

Reward Function in Trees

• Feature vector:

$$x_t = [1 \ 0 \ 1 \ 0 \ 1 \ 0]$$

• Linear reward:

$$r_t = \langle \theta_\star, x_t \rangle$$

• Max reward:

$$r_t = \max_{i \in \{1, 2, \dots, |\theta_\star|\}} \theta^{(i)} \cdot x_t^{(i)}$$

UCT vs UCT-L: 2 x 2 x 2 factorial design with Gaussian rewards and linear reward function

Results: 2 x 2 x 2 factorial design

with Gaussian rewards and linear reward function

Results: 6 x 6 x 6 factorial design with Gaussian rewards and linear reward function

Results: 2 x 2 x 2 factorial design

with Gaussian rewards and max reward function

Results: 6 x 6 x 6 factorial design

with Gaussian rewards and max reward function

Future work

• Propose a randomized algorithm