
Bandits Algorithms for
Factorial Design

Yutong Yan
joint work with

Audrey Durand, Joelle Pineau

Outline
● Factorial Experiment
● Multi-armed Bandits
● Upper Confidence Bound vs Thompson Sampling
● Linear Bandits
● Bandits in Tree Search
● Proposed UCT-Laplace
● Results

Factorial Experiment:
● An observation provides partial information on several configurations
● 3 fonts X 5 themes X 5 colors = 75 configurations
● A single run of configuration (Font=3, Color=4, Theme=2) … gives partial information on all

configurations with Color=4, Theme=2, or Font=3
● Each observation teaches us something about 43 configurations

● Sequential experimental design
● Produces the reward under an uncertain payoff distribution

Multi-armed bandits (MAB)

Multi-armed bandit: Problem statement
● Maximize

● By choosing optimal action:

 , where

● Minimize expected regret:

Upper Confidence Bound (UCB)
● Optimism in the face of uncertainty (OFU)
● Pick the arm with the highest upper confidence bound
● [Auer et al.(2002)] showed UCB satisfies optimal rate of

exploration [Lai and Robbins(1995)]
● The most popular choice is UCB1:

Thompson Sampling (TS)
● Thompson sampling was first induced by [Thompson

(1933)]
● Bayes theorem:
● Sample from posterior distribution (conditioned on the

observed rewards) for arm a:
● Selection rule:

● Example: Gaussian bandits sampling:

UCB vs TS
● Deterministic
● Has theoretical guarantees

● Probabilistic
● Better empirical performance

Factorial Experiment as Bandits

● MAB:
○ Each configuration as an arm
○ K=4 arms

Linear Bandits ● Maximize

● By choosing optimal action:

● Minimize expected regret:

● Linear Thompson Samping (LinTS):

Factorial Experiment as Bandits

● MAB:
○ Each configuration as an arm
○ K=4 arms

● Linear Bandits:
○ Binary feature vector dimension d=4
○ [email(no), SMS(yes), day(no), week(yes)]
○ [0 1 0 1]

Bandits Algorithms for Tree Search (BATS)

Factorial Experiment as Bandits

● MAB:
○ Each configuration as an arm
○ K=4 arms

● Linear Bandits:
○ Binary feature vector dimension is 4
○ [email(no), SMS(yes), day(no), week(yes)]
○ [0 1 0 1]

● BATS:
○ 2 factors and 2 choices per factor
○ 2 x 2 x 2 factorial design
○ Tree Depth D=2
○ At depth d=1, email or SMS
○ At depth d=2, every day or every week

Recall: Factorial Experiment
● 3 fonts X 5 themes X 5 colors = 75 configurations
● MAB: K=75 arms
● LinTS: Feature vector dimension=13
● BATS: Tree depth D=3

○ 2 factors with 5 choices per factor, 1 factor with 3 choices per factor
○ 3 X 5 X 5 factorial design

Upper Confidence Bound applied to Trees (UCT)

● UCB1 in Tree Search!
● Compute the B-value for every children node
● B-value in tree search:

UCT example: medical app

Update the nodes in the
trajectory

Benefits of UCT

● Computational-efficient

● Information-sharing

● Theoretical guarantees

● Weaker assumption on unknown reward function

UCT-Laplace
● UCB-Laplace has been proved in [Abbasi-Yadkori et

al.(2011)] using the Laplace method (method of mixtures
for sub-Gaussian r.v.)

● Explicit control of success probability
● In UCT-Laplace, B-value of a children node is:

Experiments
● Algorithms to be compared:

○ MAB: TS
○ Linear bandits: LinTS (tuned)
○ BATS: UCT and UCT-Laplace

● Experiments were run in different environments to verify the
robustness, optimality, and fast-convergence of UCT-Laplace:
○ Two settings with 2 and 6 choices per factor
○ Linear and non-linear reward function

Reward Function in Trees
● Feature vector:

● Linear reward:

● Max reward:

UCT vs UCT-L: 2 x 2 x 2 factorial design
 with Gaussian rewards and linear reward function

Results: 2 x 2 x 2 factorial design
 with Gaussian rewards and linear reward function

Results: 6 x 6 x 6 factorial design
 with Gaussian rewards and linear reward function

Results: 2 x 2 x 2 factorial design

 with Gaussian rewards and max reward function

Results: 6 x 6 x 6 factorial design

 with Gaussian rewards and max reward function

Future work
● Propose a randomized algorithm

