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Abstract

We investigate the possibility of leveraging gen-
erative models to improve the performance of
self-supervised training. With the observation
that convolutional structures in both encoders
and decoders can capture priors in natural im-
ages, we speculate that a pretrained generative
models on the same or a similar dataset can
improve both the accuracy of self-supervisedly
trained models and the convergence of self-
supervised training. We experimented with two
major approaches: 1) use images generated by
pretrained generative models and 2) use fea-
ture maps from the discriminator/energy-based
model of pretrained generative model. We em-
pirically found that while it can be hard for im-
age augmentations to work in general, BYOL can
benefit from augmentations with either forms.
The codes can be found in https://github.
com/yutongyan/aug_data_gen_ssl.

1. Introduction
To fully leverage the huge amount of data collected from
various sources requires unsupervised representation learn-
ing (Hinton et al., 1999). Recent papers prove that
self-supervised learning, which exploits supervised signals
through pretext tasks (Jing and Tian, 2020), is a promising
method to bridge the gap between unsupervised and super-
vised performance in computer vision (Grill et al., 2020;
Chen et al., 2020b;a; Caron et al., 2020).

Different from other unsupervised methods that explic-
itly require a generator/decoder like VAE (Kingma and
Welling, 2013) and GAN (Radford et al., 2016), self-
supervised learning typically only needs to train encoder
CNNs due to the nature of pretext tasks. However, there
are evidences that image generators may contain useful pri-
ors on natural images. One notable results from the paper
Deep Image Prior (Ulyanov et al., 2018) show that even
randomly initialized CNNs (to be more precise, convolu-
tional and deconvolutional nets) contain useful structural
priors and can be used for semantic reconstruction. More

specifically, consider the downsteam task of image inpaint-
ing where the goal is to reconstruct xgt from an image x0

which is corrupted by masking a square region M out. If
we randomly initialize a decoder network x = f(z) and
optimize the latent code z with some loss (e.g. L2 loss)
L(M ·x+xgt, x0), as long as the network is capable enough
we may get an image x̂ = M · x + xgt that is close to x0.
However, if we stop the optimization process early, x̂ can
look very similar to xgt, assuming that the corrupted re-
gion is highly correlated with the unmasked region. This
phenomenon suggests ”Deep Image Prior” does exist and
priors of natural image distributions can be captured even
with random decoders.

As self-supervised learning is to distinguish positive and
negative examples explicitly or implicitly, the structural
knowledge learned from reconstruction is never used. We
hypothesize that a pretrained generative model contains
such knowledge and can be used to improve the perfor-
mance of self-supervised learning and experiment with
possible ways of leveraging pretrained generative models
in self-supervised learning on images.

Our findings are summarized below:

• Directly enlarge datasets with images can be hard due
to the poor quality of generated images from class-
unconditional generative models.

• Auxiliary views with output feature maps of energy-
based model (somewhat equivalently, discriminators
in GANs) is more efficient than those with generated
images.

• BYOL-like methods where only positive examples are
used can benefit from additional views provided by
generative models, especially when the batch size is
small.

2. Related Works
Data Augmentation. Different data augmentation meth-
ods are extensively to improve model performance in both
supervised and unsupervised learning (Oord et al., 2018;
Zhang et al., 2016; Noroozi and Favaro, 2016; Asano
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et al., 2019). Traditional augmentation techniques in com-
puter vision include but are not limited to image flipping,
grayscaling and random scaling and cropping (He et al.,
2015), while there exist some more recent ones like variants
of Mixup (Zhang et al., 2017; Verma et al., 2019), which
augment the dataset by doing linear interpolation in pixel
or manifold space. It is also possible to do data augmenta-
tion with generative models (Sandfort et al., 2019).

Prior of CNNs. Convolutional neural net (CNN) is known
to capture the priors in nature images and generalize well
in many downstream tasks. One example for such prior
is CNN’s capability of measuring the perceptual distance
between images (Zhang et al., 2018). Similarly, (Ulyanov
et al., 2018) shows that the structure of a generator net-
work is sufficient to capture a great deal of low-level image
statistics without any learning, bridging the gap between
learning-based methods and learning-free methods based
on handcrafted image priors.

Combing self-supervised learning and generative learn-
ing. To our knowledge, there is no previous work that
tries to use generative models for self-supervised learning.
However, some papers have done the reverse direction, i.e.
to improve the performance of generative models with self-
supervised learning. For instance, in addition to the stan-
dard GAN loss (predicting real/fake images), (Chen et al.,
2019) adds an auxiliary loss on predicting the rotation of
images.

3. Method
3.1. Basic self-supervised methods

For completeness, we present two baseline methods we use
in our project: BYOL and SimCLR.

Given a set of images D, an image x ∼ D sampled uni-
formly from D and two distributions of image augmen-
tations T and T ′, two augmented views v := t(x) and
v′ := t′(x) from x by applying respectively image augmen-
tations t ∼ T and t′ ∼ T ′. For the first augmented view,
a representation yθ := fθ(v) and a projection zθ := gθ(y),
parametrized by weights θ. The target representation and
projection are y′ξ := fξ(v

′) and z′ξ := gξ(y
′), parametrized

by weights ξ. The mean squared error between the normal-
ized predictions and target projections is defined as:

Lθ,ξ := 2− 2 ·
⟨qθ(zθ), z′ξ⟩

||qθ(zθ)||2 · ||z′ξ||2
, (1)

where qθ(zθ) is a prediction of z′ξ. The total loss of BYOL
has an additional part L̃θ,ξ, which is computed by sepa-
rately feeding v′ as first view and v′ as second view, a sym-
metry of Lθ,ξ,

LBYOL
θ,ξ = Lθ,ξ + L̃θ,ξ, (2)

where we only optimize with respect to θ and ξ is updated
using exponential average of θ.

In SimCLR, given an image x, similarly, two views v and v′

are computed in the same way as in BYOL. A base encoder
network kθ(·) and a projection head mθ(cot) are used to
extract representation vectors h := kθ(v), h′ := kθ(v

′)
and map representations to the contrastive loss space, z :=
mθ(h), z′ := mθ(h), respectively. The loss is defined as:

LSimCLR
θ = − log

exp(sim(z, z′)/τ)∑2N
k=1 1[z ̸=zk] exp(sim(z, zk)/τ)

, (3)

where 1[z ̸=zk] ∈ {0, 1} is an indicator function evaluat-
ing to 1 if z ̸= zk, τ denotes a temperature parameter,
sim(u, v) = u⊤v

||u||||v|| denotes the dot product betweeen l2
normalized u and v.

3.2. Augmentation with images

Our first idea is to augment self-supervised learning with
images from generative models. More speficially, we hy-
pothesize that a well-trained generative model can be used
to efficiently sample images that are semantically similar
but visually similar, and those generated images can be bet-
ter augmentations than simple operations like rotation and
grayscaling commonly used in self-supervised learning.

3.2.1. IMAGE GENERATION METHODS

In theory we can use any generative model that allows
conditional inference. The simplest method is to perturb
the latent embedding of an image in latent space and gen-
erate an augmented image using a trained variational en-
coder (VAE) (Kingma and Welling, 2013). However, it is
hard (and we empirically observed) for class-unconditional
models to create meaningful augmented images (in the
sense that images should be visually dissimilar to some de-
gree) by random perturbations. Therefore, for the VAE ap-
proach, we instead do linear interpolation in latent space
between ground truth images to create new examples:

x̃ = g(θf(x1) + (1− θ)f(x2)) (4)

, where f, g are the encoder and the decoder respectively.
We pick θ = 0.5 so that it maintains maximal distance from
both ground truth images in latent space. This is similar to
the approach used in Mixup augmentation (Zhang et al.,
2017) except that it does interpolation in pixel space.

For better augmentation quality, we instead train an energy-
based model and sample from it using Langevin dynamics



(Du and Mordatch, 2020; Dai et al., 2019). The benefit
for doing MCMC sampling on energy-based model is that
the transition from random noises to well-generated images
can be explicitly controlled by the the number of steps and
step size without looking into the latent embeddings of im-
ages - if two images are generated from the same image
with a few number of steps, they tend to look more similar.

In this paper we follow the image generation method with
Langevin dynamics in (Du and Mordatch, 2020). Given
a datapoint x, let Eθ(x) ∈ R be the energy function, pa-
rameterized by weights θ. The energy function defines
a probabiliuty distribution via the Boltzmann distribution
pθ(x) =

exp(−fθ(x))
Z(θ) , where Z(θ) is the partition function.

This EBM is trained with standard contrastive loss:

L(θ) = Expos∼pD
[fθ(xpos)]− Exneg∼pθ

[fθ(xneg)] (5)

where xneg = x̃(T ) is sampled using Langevin dynamics:

x̃(t) = x̃(t−1) − λ

2
∇xfθ(x̃

t−1) + ωk, ωk ∼ N (0, λ),

(6)

The start of the Markov chain x(0) can either be random
noise or some simple generative model like a flow model
(Dai et al., 2019). During training, however, we cannot
simulate a long Markov chain and do backprop through ev-
ery single step of it. Therefore, during training we follow
(Du and Mordatch, 2020) and obtain x(0) from a replay
buffer (with a small probability to re-initialize samples) so
that a longer Markov chain is implicitly implemented. Dur-
ing inference, since no backprop is involved, we may sim-
ply run the T -step Markov chain iteratively to obtain a gen-
erated image. An example of the MCMC chain on EBM is
shown in Figure 1.

Figure 1: Example of MCMC chain with Langevin dy-
namics on EBM. The image on the left end is generated
by uniform random noise on pixel space. As we run more
Langevin steps, the generated image gradually transform to
the images to the right end of the sequence.

To obtain a semantically similar image, the theoretically
ideal solution is to run an inverse Langevin dynamics
(probably noise-free one) to get a ‘noisy’ image and run
forward Langevin dynamics. However, we empirically ob-
served that there are too many artifacts (as those can be
commonly seen in adversarial examples) using this ap-
proach. Therefore, we instead generate this noisy image

by linear interpolating between the source image and a ran-
dom image (sampled from uniform distribution on [0, 1] in
pixel space) and then run forward Langevin dynamics on
this image.

An alternative to get the noisy image is to mask out a region
in an image and do image inpainting with EBM. However,
we found out that the image quality is more sensetive to the
choice of hyperparameters and can be significantly worse
in many cases. Therefore we do not include the results from
this method but leave it to future work.

3.2.2. DIRECT DATASET AUGMENTATION

The simplest approach to leverage the generated images is
to directly append them to the dataset. Such method will be
best suited for methods like BYOL because false-negative
image pairs (if the images are too visually similar) will de-
crease the performance as shown in (Cai et al., 2020).

3.2.3. AUXILIARY VIEW FROM GENERATED IMAGES

Instead of directly enlarging the dataset, we may treat the
generated images as an auxiliary view of the source images.
Specifically, given an image x, we first generate an auxil-
iary sample x̃, using the method described in Section 3.2.1.
Then, we apply the same transformation as the second view
ṽ := t′(x̃), and output z̃ξ and z̃, respectively in BYOL and
SimCLR, using the same model as for the second view. The
new loss is then defined as:

L = Lcon(v, v′) + λLcon(v, ṽ), (7)

where Lcon can be chosen as LBYOL
θ,ξ or LSimCLR

θ , and λ de-
notes the parameter to control the auxiliary contrastive loss
Lcon(v, ṽ). We abuse the notatio n as taking the two views
as input to highlight the difference between the first and
second term in L.

3.3. Augmentation with feature maps

In this section, similarily as the auxiliary view method, we
will also add an auxiliary contrastive loss, in addition to
the contrastive loss used by the baseline methods. How-
ever, instead of using the same model as the second view,
here we use a pretrained unsupervised encoder, with fixed
weights. Given an image x, the pretrained unsupervised
encoder outputs the representation vector z̃ := m(x). The
new loss for BYOL is then defined as:

L = LBYOL(qθ(zθ), z
′
ξ) + λLBYOL(qθ′(zθ), z̃), (8)

where λ denotes the parameter to control the auxiliary con-
trastive loss LBYOL(z, z̃). Notice that we use a different



prediction head qθ′) for the auxiliary view. Similarly, the
new loss for SimCLR is defined as:

L = LSimCLR(q(z), q(z′)) + λLSimCLR(q′(z), q′(z̃)), (9)

where λ denotes the parameter to control the auxiliary con-
trastive loss LSimCLR(q′(z), q′(z̃)), where q′ is a different
prediction head used for the auxiliary view. Note that we
again abuse the notation as the loss taking input the pro-
jection vector, instead of the view as in Section 3.2.3, to
highlight the difference between the original loss and the
newly added auxiliary loss.

4. Experiments
For the EBM model, we use a model trained on CIFAR-10
with the same architecture (shown in Fig 2) and hyperpa-
rameters as in (Du and Mordatch, 2020). During image
generation, we use the following as the default set of hy-
perparameters:

• Step size: 10.0

• Number of MCMC steps: 100

• Standard deviation scale of Langevin dynamics noise
(with base being 0.005): 1.0

• Coefficient for linear interpolation (between natural
image and noise): 0.6

For the coefficient of the auxiliary loss, we use β = 0.01 as
the default coefficient. We use batch size 512 for SimClR
and batch size 256 for BYOL, due to memory constraint
on our available computational resources. For the rest of
the hyperparameters and settings, We follow the settings in
(Ermolov et al., 2020): we set the embedding size to 64,
learning rate to 3×10−3 and train models for 1000 epochs.
We use a simple two layer MLP for the projection heads.

Figure 3: Examples of data augmentation done via EBM. Im-
ages on the left are the original ones in CIFAR-10 dataset
while the ones on the right are the corresponding augmented
images.

Figure 4: Examples of data augmentation done via VAE. Im-
ages on the left and right are the original ones in CIFAR-10
dataset while the ones in the middle are the corresponding in-
terpolated images.

Figure 2: Architecture for the EBM model.

4.1. Direct dataset augmentation

For direct dataset augmentation with EBM, we generate 8
augmented random images for each ground truth image in
the dataset. For VAE, we randomly sample 60000 pairs
of images (non-repetitive) in the dataset and create images



with linear interpolation (with coefficient being 0.5) in la-
tent space. The results are shown in Table 1. The baseline
behaves much better than the augmented ones.

Method Baseline VAE-interpolation EBM
SimCLR 91.81 88.60 87.53

BYOL (bs=256) 90.20 89.13 85.09

Table 1: Direct dataset augmentation (%).

4.2. View augmentation with images

The results of ablation study are shown in the following
tables. While the augmentation fails on SimCLR, its per-
formance is comparable with the baseline in BYOL. We do
not find significant dependency on the choice of hyperpa-
rameters.

N = 25 N = 100 N = 225 N = 400 Baseline
SimCLR 88.78 89.61 89.04 89.68 91.81

BYOL (bs=256) 89.68 90.57 90.14 89.12 90.20

Table 2: Number of Langevin dynamics steps, CIFAR-10 (%).

σ = 0.5 σ = 1.0 σ = 2.0 Baseline
SimCLR 89.60 89.04 88.90 91.81

BYOL (bs=256) 89.96 90.57 90.01 90.20

Table 3: Standard deviation scale, CIFAR-10 (%).

α = 0.5 α = 0.6 α = 0.7 Baseline
SimCLR EBM 89.39 89.04 89.43 91.81

BYOL EBM (bs=256) 90.55 90.57 90.53 90.20

Table 4: Coefficient for noise interpolation, CIFAR-10 (%).

N = 25 N = 100 N = 225 N = 400 Baseline
SimCLR EBM 61.97 62.31 63.43 64.47 69.52

BYOL EBM (bs=256) 64.70 64.18 65.52 65.66 69.41
Table 5: Number of Langevin dynamics steps, CIFAR-100 (%).

σ = 0.5 σ = 1.0 σ = 2.0 Baseline
SimCLR EBM 62.93 63.43 62.05 69.52

BYOL EBM (bs=256) 65.65 65.52 64.23 69.41
Table 6: Standard deviation scale, CIFAR-100 (%).

α = 0.5 α = 0.6 α = 0.7 Baseline
SimCLR EBM 63.70 63.43 63.57 69.52

BYOL EBM (bs=256) 65.57 65.52 64.74 69.41
Table 7: Coefficient for noise interpolation, CIFAR-100 (%).

4.3. View augmentation with feature maps

We take the output feature of the fully connected layer of
the pretrained EBM before the final classifier as the aux-
iliary view. The accuracies are shown in Table 8 and the
convergence plot of our best performing model is shown in
Fig 5. While our model is marginally worse than the base-
line in SimCLR, our best performing model behaves much
better in BYOL with small batch size. It is also notable

that the convergence of our model is faster in the first few
epoches for BYOL. The results may suggest that BYOL-
like methods (where only positive examples are supplied)
is highly unstable and an additional view from a pretrained
model can help in such case as some sort of directed noise.

β = 0.01 β = 0.1 β = 1.0 Baseline
SimCLR EBM 91.69 91.66 91.70 91.81

BYOL EBM (bs=256) 91.66 92.13 91.50 90.20

Table 8: Coefficient for auxiliary loss, CIFAR-10 (%).

Figure 5: Convergence comparison between our best per-
formance model (BYOL, bs=256) and the baseline on
CIFAR-10.

5. Discussions
Why augmentations with images do not work? We
notice that the generated images from class-unconditional
generative models can contain many artifacts compared to
the class-conditional counterparts, which implies that the
artifacts are more likely a mixture of parts in different im-
age categories. The introduction of the mixtures of parts
can be detrimental for learning an accurate classifier. Also,
the quality of generated images is hard to control. Wheter
a better generative model helps remains to be studied in
future works.

Why BYOL benefits from additional views? BYOL re-
lies on the mean teacher (implemented using exponential
mean averaging) (Shi et al., 2020). With deep models
the dynamics can be highly unstable especially with small
batch sizes. An additional view from a pretrained gener-
ative model can act as an anchor for these embeddings so
that 1) the initialization becomes easier and 2) a directed
noise is added to encourage the model to explore more
generalizable features. We also observe that with larger
batch size the gain from generative models vanishes, which
deserves future investigation. It is also worth checking
whether an ensemble of generative models produces better
guidance for BYOL-like methods.



6. Conclusion
We explore some possibilities of leveraging generative
models for self-supervised learning on images. Although
the results are mixed, we observe interesting behaviors of
augmentations for BYOL-like methods. We believe that
further research on why these behaviors appear can be a
promising direction. Besides, as we do not use a huge gen-
erative model (e.g. scale comparable to BigGAN (Brock
et al., 2019)) in our studies due to constraints on compu-
tational resources, it remains to see if a good generative
model is all we need for fixing the issues we encountered.
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