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Motivation: Deep Image Prior
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Can we improve self-supervised learning
with generative models?



ldea #1: Generator as augmentation

Construct semantically similar images with different appearances

1. Simple augmentation - add augmented images to the dataset

2. Auxiliary contrastive loss from another view



Image generation via Langevin dynamics
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Energy-based model
Instead of running inverse Langevin dynamics, we generate noisy images by

Ip =014+ (1—pB)e, e~U(0,1)

Y. Du and I. Mordatch. Implicit generation and generalization in energy-based models. arXiv preprint arXiv:1903.08689, 2019.
Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, and Dale Schuurmans. Exponential family estimation via adversarial dynamics embedding. arXiv preprint arXiv:1904.12083, 2019.



ldea #2: Discriminator as another view

As it is trained with generator (decoder), the discriminator (encoder) contains
priors from the generator

- Treat the output feature map of discriminator as a ‘view’



ldea #2: Discriminator as another view
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3.1.2

(Contrastive Loss) + lambda * (Auxiliary Contrastive Loss)
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Experiment settings

Train for 1000 epochs with base Ir 3e-3 and embedding size 64

For idea #1, vary the following parameters: 1. Langevin dynamics step size, 2. # of
steps, 3. std of noise, 4. lambda coeff in loss, 5. coeff for noisy image interpolation

Default setting - # Step=15, step size=10, noise std=1.0, lambda=0.01 and
alpha=0.6

We use batch size 256 for BYOL and 512 for SImCLR



Ablation study - #1

# Steps =5 # Steps = 10 # Steps = 15 # Steps = 20 Baseline
SimCLR 86.75 87.62 87.82 88.11 91.81
BYOL 89.68 90.57 90.14 89.12 90.20




Ablation study - #1

Alpha = 0.5 Alpha = 0.6 Alpha = 0.7 Baseline
SIimCLR 87.88 87.82 88.22 91.81
BYOL 90.55 90.45 90.53 90.20

std=0.5 std=1.0 std =2.0 Baseline
SIimCLR 88.53 87.82 87.73 91.81




Ablation study - #1

Coeff = 0.001 Coeff = 0.01 Coeff = 0.1 Baseline
BYOL 89.12 90.57 89.21 90.20

Step size =5 Step size =10 Step size = 20 Baseline
SimCLR 87.69 87.82 88.21 91.81




Augmentation with discriminator features

Coeff =0.001 | Coeff =0.01 Coeff = 0.1 Coeff=1.0 Baseline
SimCLR 91.78 91.69 91.66 N/A
BYOL N/A 91.66 91.50 90.20




Augmentation with discriminator features




Conclusion

- Direct augmentation with generated images does not seem to work easily
- Image artifacts due to (class-)unconditional generative model
- Hard to control semantics

- Additional view from pretrained discriminators seems to improve convergence
for BYOL-like methods



Thanks!






