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Abstract

Recent literature have started exploring prob-
lems in language-assisted reinforcement learn-
ing (RL). This is a setting where language itself
is not necessary, but incorporating language can
be advantageous for solving the task. In this
work, We explore one specific case of language-
assisted RL, where we address the challenges
of solving tasks with sparse reward. We do so
by using reward shaping through leveraging nat-
ural language instructions. Our project extends
a recent work, in which a framework called
LanguagE-Action Reward Network (LEARN)
is proposed. LEARN maps free-form natural
language instructions to intermediate rewards
based on actions taken by the agent. The work
has shown that language-based rewards can
lead to performance advancement compared
to learning without language through extensive
experiments. However, one draw back of the
method is that the reward shaping is only de-
pendent on the actions for simplicity. In this
work, we would like to extend the approach by
learning a state representation using a VAE, and
conduct reward shaping based on both actions
and the state representation. Our empirical re-
sults show that the VAE is not able to learn
representations that can significantly improve
baselines, but other methods of representation
learning for states should be investigated in fu-
ture work.

1 Introduction

1.1 Motivation

In reinforcement learning (RL), the task is repre-
sented by the reward function. The optimal policy
is determined by the reward function and the model
of the domain. In the past decade, RL approaches
have shown great success in solving many com-
plex sequential decision-making problems (Mnih
et al., 2013; Silver et al., 2017). However, existing
solutions often suffer from poor performance and

sample inefficiency when the reward function gives
very sparse signals. This is known as the ”sparse
reward” problem in RL. A common solution is
through reward shaping, which is the practice of
modifying the reward function by supplying addi-
tional rewards (Ng et al., 1999).

Figure 1: The Atari game Montezuma’s Revenge is a
classic task which shows the difficulty for solving sparse
reward problems. Through out the game, the agent must
perform long sequences of actions before receiving a
reward at checkpoints.

1.2 Background
A Markov Decision Process (MDP) can be defined
by the tuple ⟨S,A, T,R, γ⟩, where S is a set of
states, A is a set of actions, T : S×A×A → [0, 1]
describes transition probabilities, R : S ×A → R
is a reward function mapping the current state st
and current action at to real-valued rewards, and
γ < 1 is a discount factor.

Recently, (Goyal et al., 2019) proposes a frame-
work that matches free-form natural language in-
structions to intermediate rewards based on actions
taken by the agent (shown in fig. 6). The LanguagE-
Action Reward Network (LEARN) framework con-
sists of two modules:

1) A neural network that takes the agent’s action-
frequency sequence f and natural language instruc-
tion l as input, and predicts whether the sequence



is related to the instruction or not with two prob-
abilities, PR(f) and PU (f), corresponding to the
classes RELATED and UNRELATED respectively.
The action-frequency vector, with dimensionality
equal to the number of actions in the environment,
is created by first sampling two time steps i and j
(i < j), and the k-th element of the vector is the
fraction of time steps action k appears between i
and j. The language instruction is either embed-
ded with pretrained embeddings or recurrent neural
networks (RNN).

2) The reward shaping step is essentially adding
an additional term, the difference between RE-
LATED and UNRELATED probabilities outputted
by the neural network, to the reward: The po-
tential function is defined as ϕ(ft) = PR(f) −
PU (f). The intermediate reward is then defined as
Rlang(ft) = γ · ϕ(ft) − ϕ(ft−1), where γ is the
discount factor. The language-based reward shap-
ing term Rlang is then added to the original reward
function to solve for the optimal policy.

In this work, the standard MDP is modified as
language-augmented MDP, denoted as MDP+L,
shown in Figure 6. MDP+L is defined by the tu-
ple ⟨S,A, T,R, γ, l⟩, where l ∈ L is a language
command describing the intended behavior. In this
work, L is defined as the set of all possible language
commands in the environment. Our goal is to learn
the optimal policy π∗ : S ×A that maximizes the
expected sum of rewards. We use Rext (extrinsic
reward) to denote standard reward function defined
above, in order to distinguish the intrinsic reward
Rlang.

1.3 Contribution

We wish to extend LEARN by adding aState-
based rewards: In LEARN, the language-based
reward is a function of only the past actions. How-
ever, (Wang et al., 2019) has shown that memo-
rizing the past can enable the recognition of the
current status and thus understanding which words
or sub-instructions to focus on next. Therefore,
modelling the language-based reward as a function
of both the past states and actions should allow the
agent to benefit from the language descriptions that
refer to objects in the state.

2 Literature Review

LEARN is the first work to use natural language
instruction to assist learning. We are not able to
relate similar works with the same focus. However,

Figure 2: Standard RL module augmented with a
LEARN module.

there have been several related works leveraging
natural language instructions in RL tasks, some
examples of these work includes the following:

2.1 Learning instruction conditioned policy in
RL

Instead of learning a language-conditional reward
that has been done in LEARN, (Bahdanau et al.,
2018) proposes the method, Adversarial Goal-
Induced Learning from Examples (AGILE) that
learns a language-conditional policy πθ. AGILE is
designed for tasks where the reward function needs
to be learned or when the reward is sparse. In
AGILE, the agent is given instructions describing
the goal state which the agent should reach. The
AGILE framework can be decomposed into two
modules, a discriminator and a generator, as seen
in (Goodfellow et al., 2014) and (Ho and Ermon,
2016):

1) The Reward Discriminator Dϕ: The dis-
criminator is given pairs of natural language in-
structions c and and state s and tries to discrimi-
nate whether the a given state is a goal state for
the instruction by minimizing the loss function.
(c, s) are negative example pairs drawn randomly
from a buffer, while (ci, si) are positive examples
draw from dataset D. The loss function is de-
fined as LD(ϕ) = −E(c,g)∼B log (1−Dϕ(c, s))−
E(ci,gi)∼D logDϕ (ci, gi). The discriminator pro-
vides a meaningful reward function for training
πθ:

r̂t =

{
1 if Dϕ(c, st) > 0.5.

0 o.w.



2) The Policy Generator R: Using the reward
function r̂ provided by the discriminator, we can
then train a policy πθ normally like any other re-
inforcement learning problem, where we find θ by
maximizing the expected total reward: Rπ(θ) =
E(c,s1:∞)

∑∞
t=1 γ

t−1r̂t + αH (πθ).
Here, H is the entropy of the policy for regular-

ization purposes, and α is a hyper-parameter.
Overall, AGILE uses an adversarial framework,

composed of a reward model that recognizes goal
states from language instructions, and a policy that
learns what to do to get to a goal state.

2.2 Improving instruction-following using RL

In Wang et al. 2019, intermediate language-based
rewards are also used in RL. The focus of the work
is to learn a better and more generalizable using an
intrinsic reward function. Compared to LEARN,
this work uses RL to improve natural language
instruction-following, while the goal of LEARN is
to use instructions to facilate RL training.

In particular, a matching critic provides an intrin-
sic reward to encourage the matching between in-
structions and trajectories. The goal of the intrinsic
reward signal is to encourage the RL agent to better
understand the language input and penalize the tra-
jectories that do not match the instructions. Being
trained with the extrinsic reward from the environ-
ment and intrinsic reward from the matching critic,
the agent learns to ground the natural language on
the trajectory. The intrinsic reward is constructed
as the probability of the language instruction, given
the trajectory executed. In this work, the match-
ing critic is pretrained with human demonstrations
(the ground-truth instruction-trajectory pairs) via
supervised learning. Interestingly, the total reward
is composed of the extrinsic reward and a weighing
intrinsic reward, with a weighing hyperparameter.
It is worth our attention that if we should weigh our
intrinsic reward.

3 Models

3.1 Baselines

We conducted experiments with two baselines. The
first one is simply the standard RL agent with no
reward shaping (e.g. the agents receives reward
only from the environment). This is to test the
hypothesis whether reward shaping improves RL
agent training in sparse reward problems.

The second baseline used is the standard RL
agent augmented with the LEARN module from

Figure 3: LEARN module with action representation
input only

Goyal et al.’s original paper (refer to figure 3). The
LEARN module takes in two inputs:

Action frequency vector Representation of the
sequence of actions described in section 1.2.

Embedded natural language instruction The
instructions were embedded using either of the
three following encoders:

• InferSent A pretrained sentence embedding
model (Conneau et al., 2017) with one fully
connected layer. Only the connected layer is
trained during training.

• GloVe + RNN: A pretrained word embedding
(Pennington et al., 2014) with two-layer GRU
encoder. The mean of the top encoder is used
as the sentence embedding. Only the GRU
encoder is trained during training.

• RNN: Randomly initialized word embeddings
with two-layer GRU. Everything is trained
during training.

The LEARN module then outputs a confidence
score for the relatedness of the natural language
instruction and action sequence, which is used as
the reward shaping term in addition to the external
reward the agent receives from the environment.

The LEARN baseline with only action represen-
tation input is used to test the hypothesis whether
state-action dependent reward shaping outperforms
action only dependent reward shaping.

3.2 LEARN with State Information

Inspired by (Ha and Schmidhuber, 2018), in which
they learn a model via training in an unsupervised
manner to learn a compressed spatial and temporal
representation of the environment. The original



Figure 4: Extended LEARN module with state-action representation

work of LEARN concatenates the action frequency
vector and the encoded language command vector.
We claim that this information to some extent is
not sufficient for the agent to learn the meaning
of the language command, without the context of
the states. In this work, with the hypothesis that
adding extra state information can aid the agent to
learn better in an environment where the rewards
are sparse, we propose to use a variational autoen-
coders (VAEs) model (Kingma and Welling, 2013)
to learn a state representation and add the latent
state representation to the original LEARN module.

Figure 5: An output example of the learned VAE model

We reuse the same game frame dataset used to
collect the annotations for LEARN to learn the
VAE model. However, the game frames are repeti-

tive in the dataset, in total of 180, 000. Thereafter,
we decide to sample 5 frames uniformly for each
annotation so that we guarantee that we are able to
generate meaningful state representation for each
annotation sample in the collected dataset. Note
that each annotation is associated with 150 frames
and for efficiency, we decide not to include all
frames for one annotation. After we fully pretrain
our VAE model, we proceed to the new LEARN
module with the extra state information.

Using our learned VAE’s encoder, we could take
input any game state, and output the latent state
representation vector, which we will use to train
the LEARN model, in addition to the encoded
language command vector and action-frequency
vector. In the dataset, each sample is composed
of the set of actions taken and the language com-
mand. Thereafter, we backtrack using the language
command, in the annotation file, to find the corre-
sponding set of games frames. Since the language
command is associated with a truncated trajectory,
instead of just a game state, we decide to sample
5 game frames from all related game frames, for
a sample. For example, with one language com-
mand, ”go left jumping once”, the agent needs to
perform multiple actions through many states, like
”go left” and ”jump”. This results in 5 latent state



vectors and we concatenate the vectors into one
vector, which is our state representation vector. An
example of the decoded game state output by the
model is shown in Figure 5.

The fully trained VAE module with VAE is used
in the RL framework the same as the original VAE
module. The LEARN module takes input a set of
actions taken and the encoded language command,
additionaly, concatenated latent state vectors of
past 5 game frames, since we train our LEARN
with 5 game frames. Then, the LEARN module
outputs the logits for the related and the unrelated
class.

3.3 Dataset

The work in which LEARN is proposed provides
complete dataset for training. The trajectories in
the environment are first generated, which may or
may not be directly relevant for the final task(s).
Then, for each trajectory, natural language annota-
tions are marked by human annotators, which act as
instructions for the agent to follow from the initial
state of the trajectory to the final state. 20 trajecto-
ries are selected from the Atari Grand Challenge
dataset (Kurin et al., 2017), which contains hun-
dreds of crowd-sourced trajectories of human game
plays on 5 Atari games, including Montezuma’s Re-
venge. The 20 trajectories contain a total of about
183,000 frames. From these trajectories, 2,708
equally-spaced clips (with overlapping frames) are
extracted, each three-seconds long. Annotators
were shown clips from the game and asked to pro-
vide corresponding language instructions. Bad an-
notations and similar annotations were discarded.
There are a total number of 6,870 language descrip-
tions. The annotations have a significant amount of
variation, both in terms of length and vocabulary,
and they are not filtered out or corrected.

The (trajectory, language) pairs were split into
training and validation sets, such that there is no
overlap between the frames in the training set and
the validation set. The training dataset is com-
posed of 160,000 (action-frequency vector, lan-
guage) pairs and a validation dataset is composed
of 40,000 pairs from the validation set. For each
task in the game, the agent gets an extrinsic reward
of +1 from the environment for reaching the goal,
and an extrinsic reward of zero in all other cases.

3.4 Evaluation Metric

Performance is evaluated using two metrics:

Figure 6: Examples of descriptions collected.

1) AUC: The area under this curve during train-
ing, where the number of timesteps is on x-axis
and the number of successful episodes is on the
y-axis. AUC is a measure of how quickly the agent
learns, and is the metric we use to compare two
policy training runs.

2) Final Policy: For the last 10,000 time steps,
we do not update the policy and record the num-
ber of successful episodes (i.e. number of goals
reached) using the learned policy.

4 Experiments Details

Defining the Tasks To empirically evaluate the
performance of our LEARN model extended with
state information against the baselines, we conduct
experiments on the Atari game Montezuma’s Re-
venge, a classic example of a sparse reward task.
Goyal et al. defined 15 tasks in Montezuma’s Re-
venge, and each task requires the agent to go from
a fixed start position to a fixed end position by in-
teracting with objects present along the path. The
agent gets an extrinsic reward of +1 from the en-
vironment for reaching the goal state, and 0 in all
other cases. In this work, we ran empirical experi-
ments on 3 out of 15 tasks - task 4, 6, and 14, due
to computation constraints.

To train the RL agent, we used Proximal Policy
Optimization (Schulman et al., 2017) for 500,000



Figure 7: Comparison of AUC for different model and baselines. Top: Our Results. Bottom: Baselines from the
original LEARN paper.

Model Task 4 Task 6 Task 14 Mean
No Reward Shaping (Original Results) N \A N \A N \A 903

No Reward Shaping 11761 76.6% 6382 0.0644% 15434 15.2% 11192 30.7%
LEARN (Original Results) N \A N \A N \A 1529

LEARN 15379 81.1% 12797 0.445 % 16069 16.9 % 14748 32.8%
LEARN with State Information 16443 84.2 % 5132 0.0866% 12377 5.30% 11317 29.9%

Table 1: Experiment results on the 3 tasks, including the average number of successful episodes completed (left)
and percentage of successful completion of task (right) during the 10,000 step test run.

time steps for all our experiments. For each task,
we trained 9 different policies: Each task was
trained with 3 different initialization and 3 differ-
ent set of language descriptions. We evaluate the
performance of the model on a task by averaging
the performance over all 9 runs.

Hyper-Parameters For the LEARN module, we
select the best encoder (InferSent / GloVe+RNN
/ RNN) based on the validation accuracy (In
our case, InferSent was selected). For the RL
module, we tune for the hyper-parameter λ =
1.0, 0.1, 0.01 which defines the reward function
Rtotal = Rexternal + λRlanguage. We hyper-tune
the λ for each of the task by treating all other task
as the validation task. The area under the curve
(AUC) is calculated for the validation tasks, and
the hyper-parameter with the highest AUC is se-
lected for the task.

5 Results and Discussion

From table 1 and figure 7, we see a comparison
of the baselines from the original LEARN paper
and our reproduced results. The results agree in
terms of ordering, but the magnitude of the results
differs significantly. The difference is due to three
reasons.

• In our experiments, the mean performance is
computed from 3 tasks only rather than all 15
due to computation constraints.

• Our experiment used different initialization
seeds, as the seeds used by the original paper
were not provided. In addition, the original
paper ran 10 seeds for each experiment, while
we only used 3 seeds due to computation con-
straints.

• Our experiment’s hyper-parameters tuned
were likely different from the original paper,
as the authors did not mention what values



the hyper-parameters were tuned with (i.e. we
selected λ from 0.01, 0.1, 1.0, but the original
paper did not mention what values they have
tried).

Observing the results for the extended LEARN
model with state information, we see that the
learned state representation does not significantly
improves the baselines. This does not necessar-
ily suggest that state representation is not useful
for reward shaping, but rather using the latent rep-
resentation learnt from a VAE is not the correct
way to incorporate the representation. Alternative
representation learning methods such as using mu-
tual information maximization (Anand et al., 2019)
should be explored in future work.

6 Conclusion

In this work, we introduced an extended LEARN
model that incorporates both state and action infor-
mation for reward shaping in the sparse reward set-
ting. The empirical results show that using a VAE
is not able to learn state representation that can
significantly improve baselines. However, other
methods of state representation learning should be
investigated in future work. For code, see GitHub
repository.

7 Contribution

Yutong Yan processed the dataset to label game
states images with instructions, implemented VAE
model and ran experiments with LEARN module
with state information.

Irene Zhang modified code from original
LEARN paper for baseline experiments, ran base-
line experiments, and visualized result for baseline
and new model.
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