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Chapter 1

UCB1 with Markov’s Inequality

Regret analysis guidelines:

1. Decompose the regret over the arms.

2. On a "good" event prove that the sub-optimal arms are not played too often.

3. Show that the "good" event occurs with high probability.

Suppose X1, ..., XT is a sequence of independent Gaussian random variables, with mean µ and
variance 1. The mean is µ̂ = 1

T

∑T
t=1Xt. For any δ ∈ (0, 1),

P(µ̂ ≥ µ+

√
2 log(1/δ)

T
) ≤ δ (1.1)

Similarly,

P(µ̂ ≤ µ−
√

2 log(1/δ)

T
) ≤ δ (1.2)

Markov inequality:

P(X ≥ C) ≤ E[X]

C
(1.3)
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If X ∼ N (0, 1),

P(µ̂ ≥ µ+ ε) = P(
1

T

∑T
i=1Xt ≥ µ+ ε)

= P(
∑T
i=1(Xt − µ) ≥ εT )

= P
(
exp(λ

∑T
i=1(Xt − µ)) ≥ exp(λεT )

)
Apply Markov Inequality

≤ exp(−λεT )E[exp(λ
∑T
i=1(Xt − µ))]

= exp(−λεT )
∏T
i=1exp(λ2/2)

= exp(−εTλ+
λ2T

2
)

To minimize the above, choose λ = ε

= exp(−ε
2T

2
)

According to Equation 1.1 and 1.2

= δ

(1.4)

Regret decomposition:
Define ∆a = µ? − µa and Ta(t) =

∑t
s=1 1(As = a)

Rn = nµ? − E[

n∑
t=1

Rt]

= E[

n∑
t=1

(µ? −Rt)]

= E[

n∑
t=1

∆At
]

= E[

n∑
t=1

∑
a∈A

1(At = a)∆a]

=
∑
a∈A

∆aE[Ta(n)]

(1.5)

Assumption 1. Assume that the estimated value of arm a is not too large. In other words, it is
smaller than the true value plus the confidence interval.

µa +

√
2 log(1/δ)

Ta(t− 1)
≥ µ̂a(t− 1) (1.6)

Assumption 2. Assume that the estimated value of the optimal arm a? is not too small, so that
it would not be underestimated and not selected.

µ̂a?(t− 1) +

√
2 log(1/δ)

Ta?(t− 1)
≥ µ? (1.7)
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Now suppose At = a in round t,

According to Equation 1.6

µa + 2

√
2 log(1/δ)

Ta(t− 1)
≥ µ̂a(t− 1) +

√
2 log(1/δ)

Ta(t− 1)

Optimal arm is not selected

≥ µ̂a?(t− 1) +

√
2 log(1/δ)

Ta?(t− 1)

≥ µa?

= µa + ∆a

(1.8)

Therefore, we can obtain

2

√
2 log(1/δ)

Ta(t− 1)
≥ ∆a (1.9)

Simultaneously,

Ta(t− 1) ≤
8 log 1

δ

∆2
a

(1.10)

If good event happens (Assumption 1 and 2):

Ta(n) ≤ 1 +
8 log 1

δ

∆2
a

(1.11)

Let µ̂a,s be the empirical mean of arm a after s plays. The concentration theorem shows that

P(µ̂a,s ≥ µa +

√
2 log(1/δ)

s
) ≤ δ (1.12)

Combining with a union bound, defined as P(
⋃
iBi) ≤

∑
i P(Bi)

P(∃ s ≤ n : µ̂a,s ≥ µa +

√
2 log(1/δ)

s
) ≤ nδ (1.13)

Now we know when the bad event happens, a sub-optimal arm can be played n times with prob-
ability 2nδ, where 2 means we have to apply concentration bounds upper and lower. The regret
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bound is then
Rn =

∑
a∈A

∆aE[Ta(n)]

≤
∑

a∈A:∆a>0

∆a

(
2δn2 + 1 +

8 log(1/δ)

∆2
a

)
Choose δ = 1/n2

≤
∑

a∈A:∆a>0

3∆a +
16 log(n)

∆a

(1.14)
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Chapter 2

UCB1 with Chernoff-Hoeffding
Inequality

Theorem 1. For all K ≥ 1, if policy UCB1 is run on K machines having arbitrary reward
distribution P1, ..., Pk with support in [0, 1], then its expected regret after any number n of plays is
at most

[
8
∑

i:µi<µ?

( lnn

∆i

)]
+
(

1 +
π2

3

)( K∑
j=1

∆j

)
(2.1)

where µ1, ..., µk are the expected values of P1, ..., Pk.

Fact 2. (Chernoff-Hoeffding bound) Let X1, ..., Xn be random variables with common range
[0, 1] and such that E[Xt|X1, ..., Xt−1] = µ. Let Sn = X1 + · · ·+Xn. Then for all a ≥ 0

P
(
Sn ≥ nµ+ a

)
≤ e−2a2/n (2.2)

Similarly,

P
(
Sn ≤ nµ− a

)
≤ e−2a2/n (2.3)

Proof. Let ct,s =
√

2 ln t
s . We need to upper bound Ti(n) on any sequence of plays. More precisely,

for each t ≥ 1, we bound the indicator function of It = i as follows. Let l be any positive inteter.
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Ti(n) = 1 +

n∑
t=K+1

{It = i} Every arm visited once

Sum over how many times an arm gets visited after l plays

≤ l +

n∑
t=K+1

{It = i, Ti(t− 1) ≥ l}

Sum over how many times the UCB of the selected arm larger than the optimal arm after l plays

≤ l +

n∑
t=K+1

{
X
?

T?(t−1) + ct−1,T?(t−1) ≤ Xi,Ti(t−1) + ct−1,Ti(t−1), Ti(t− 1) ≥ l
}

For any t, the optimal arm i? can be played stimes, where s ∈ (0, t)

The arm i can be played si times, where si ∈ (l, t)

Therefore, if the worst case happens,

the minimum value of the optimal arm is less than the maximum value of the arm in their time step range

≤ l +

n∑
t=K+1

{
min

0<s<t
X
?

s + ct−1,s ≤ max
l≤si<t

Xi,si + ct−1,si

}
Rearrange

≤ l +

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

{
X
?

s + ct,s ≤ Xi,si + ct,si

}
(2.4)

Now observe that X
?

s + ct,s ≤ Xi,si + ct,si implies one of the following must hold

X
?

s ≤ µ? − ct,s(Underestimate optimal arm) (2.5)

Xi,si ≥ µi + ct,si (2.6)

µ? < µi + 2ct,si (2.7)

First, bound the probability events of 2.5 and 2.6 using Fact 2

P
(
X
?

s ≤ µ? − ct,s
)
≤ e−4 ln t = t−4 (2.8)

P
(
Xi,si ≥ µi + ct,si

)
≤ e−4 ln t = t−4 (2.9)
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To make 2.7 false, l =
⌈
(8 lnn)/∆2

i

⌉
µ? − µi − 2ct,si = µ? − µi − 2

√
2(ln t)/si

≥ µ? − µi −∆i

= 0

(2.10)

Therefore, for si ≥ (8 lnn)/∆2
i , we can get

E[Ti(n)] ≤
⌈8 lnn

∆2
i

⌉
+

∞∑
t=1

t−1∑
s=1

t−1∑
si=
⌈

(8 lnn)/∆2
i

⌉
(
P(X

?

s ≤ µ? − ct,s) + P(Xi,si ≥ µi + ct,si)
)

≤
⌈8 lnn

∆2
i

⌉
+

∞∑
t=1

t∑
s=1

t∑
si=1

2t−4

≤ 8 lnn

∆2
i

+ 1 +
π2

3

(2.11)
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Chapter 3

Upper Confidence Bounds applied to
Trees (UCT)

Problem definition:
Consider a bandit problem with K arms, defined by the sequence of random payoffs Xit, i =

1, ...,K, t ≥ 1, where each i is the index of a gambling machine (the “arm” of a bandit). Successive
plays of machine i yield the payoffs Xi1, Xi2, · · ·. For simplicity, we shall assume that Xit lies in
the interval [0, 1]. An allocation policy is a mapping that selects the next arm to be played based
on the sequence of past selections and the payoffs obtained. The expected regret of an allocation
policy A after n plays is defined by Expected cumulative regret is defined as

R = max
i

E[

n∑
t=1

Xit]− E[

K∑
i=1

Ti(n)∑
t=1

Xi,t], (3.1)

where Ti(n) =
∑n
s=1 1(Is = i) is the number of times arm i was played up to time n, It ∈ {1, ...,K}

is the index of the arm selected at time t.

Remark 1. There is no policy whose regret would grow slower than O(lnn) for a large class of
payoff distributions [1].

Algorithm UCB1, whose finite-time regret is studied in [2]. It chooses the arm with the best
upper confidence bound:

It = arg max
i∈{1,...,K}

{Xi,Ti(t−1) + ct−1,Ti(t−1)}, (3.2)

where ct,s is a bias sequence chosen to be

ct,s =

√
2 ln t

s
(3.3)
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The bias sequence is such that if Xit were i.i.d. (or form a martingale difference process shifted by
a constant) then the inequalities

P(Xis ≥ µi + ct,s) ≤ t−4 (3.4)

and

P(Xis ≤ µi + ct,s) ≤ t−4 (3.5)

This follows from Hoeffding’s (or more generally, the Hoeffding Azuma) inequality (see Lemma 8).
Unlike in [2], we we allow the mean-value of the payoffs Xi· to drift as a function of time.

Laplace bound from Chapter 2 in [3]:

P
( 1

N

N∑
i=1

Zi ≥ σ

√
2(1 +

1

N
)
ln(
√
N + 1/δ)

N

)
≤ δ (3.6)

The expected values of the averages

Xin =
1

n

n∑
t=1

Xit (3.7)

converge. We let µin = E[Xin] and

µi = lim
n→∞

µin. (3.8)

Further, we define δin by (Non-stationarity)

µin = µi + δin (3.9)

We start by analyzing UCB1 for non-stationary bandit problems. Remember that by assump-
tion 0 ≤ Xit ≤ 1. Quantities related to the optimal arm shall be upper indexed by a star, e.g.,
µ?, T ?(t), X

?

t , etc. For the sake of easy referencing, we summarize the assumptions on the rewards
here:

Assumption 2. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that Xitt is {Fit}t-adapted and
Xi,t is conditionally independent of Fi,t+1, Fi,t+2, ... given Fi,t−1. Then 0 ≤ Xit ≤ 1 and the limit
of µin = E[Xin] exists. Further, we assume that there exists a constant Cp > 0 and an integer Np
such that for n ≥ Np, for any δ > 0, ∆n(δ) = Cp

√
n ln(1/δ), the following bounds hold:

P(nXin ≥ nE[Xin] + ∆n(δ)) ≤ δ (3.10)

and

P(nXin ≤ nE[Xin]−∆n(δ)) ≤ δ (3.11)
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Set δ to t−4, according to Hoeffding’s inequality,

ct,s = ∆s(t
−4)/s = Cp

√
s · 4 · ln(t)/s = 2Cp

√
ln(t)

s
(3.12)

We let ∆i = µ? − µi.

Definition 3. Convergence of δit with ε
Since δit converges by assumption to zero, for all ε > 0 there exists an index N0(ε) such that if

t ≥ N0(ε) then |δit| ≤ ε∆i/2 and |δj?,t| ≤ ε∆i/2, whenever i is the index of a sub-optimal arm and
j? is the index of an optimal arm.

In particular, it follows that for any optimal arm j?, t ≥ N0(ε), |δj?,t| ≤ ε/2 min{i|∆i>0}∆i.

Theorem 4. Consider UCB1 applied to a non-stationary problem where the pay-off sequence
satisfies Assumption 2 and where the bias sequence ct,s, used by UCB1 is given by Equation 3.12.
Fix ε > 0. Let Ti(n) denote the number of plays of arm i. Then if i is the index of a suboptimal
arm then

E[Ti(n)] ≤
16C2

p lnn

(1− ε)2∆2
i

+N0(ε) +Np + 1 +
π2

3
(3.13)

Note that here N0(ε) comes from Definition 3 and Np comes from Assumption 2.

Proof. Fix the index i of a suboptimal arm. We follow the proof of Theorem 1 in [2]. Let

A0(n, ε) = min{s|ct,s ≤ (1− ε)∆i/2} (3.14)

Note here the reason why (1− ε) is related to bound bad events later.
By the definition of ct,s, A0(n, ε) =

⌈
16C2

p lnn

(1−ε)2∆2
i

⌉
. We let

A(n, ε) = max(A0(n, ε), N0(ε), Np) (3.15)

By definition,

Ti(n) = 1 +

n∑
t=K+1

I(It = i)

≤ A(n, ε) +

n∑
t=K+1

I(It = i, Ti(t− 1) ≥ A(n, ε))

≤ A(n, ε) +

n∑
t=1

t−1∑
s=1

∑
s′=A(n,ε)

I(X
?

s + ct,s ≤ Xi,s′ + ct,s′)

(3.16)

• For n ≥ t ≥ s′ ≥ A(n, ε), we have µ?t ≥ µit + 2ct,s′ . (Note that we assume after n time steps,
we will not play sub-optimal arms.)

• Indeed, since n ≥ t and ct,s increases in t, ct,s′ ≤ cn,s′ .
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• Since ct,s decreases in s, and s′ ≥ A(n, ε) ≥ A0(n, ε), cn,s′ ≤ cn,A0(n,ε).

By the definition of A0, cn,A0(n,ε) ≤ (1− ε)∆i/2 (Equation 3.14)
Hence, 2ct,s′ ≤ (1− ε)∆i. (cn,s′ ≤ cn,A0(n,ε))
Since t ≥ A(n, ε) ≥ N0(ε), we have that δit ≤ ε∆i. ( if t ≥ N0(ε) then |δit| ≤ ε∆i/2)
Hence, µ?t − µit − 2ct,s′ = ∆i − |δ?t | − δit − 2ct,s′ ≥ ∆i − ε∆i − (1− ε)∆i = 0. (µin = µi + δin)
From [2], observing X

?

s + ct,s ≤ Xi,si + ct,s, one of the following must hold

X
?

s ≤ µ? − ct,s (3.17)

Xi,si ≥ µi + ct,si (3.18)

µ? < µi + 2ct,si (3.19)

Hence, I(X
?

s + ct,s ≤ Xi,si + ct,s) ≤ I(X
?

s ≤ µ? − ct,s) + I(Xi,si ≥ µi + ct,si).
Similar to chapter 1, now we can bound the two bad events using Equation 3.4 and 3.5, which

is equivalent to 2t−4.

E[Ti(n)] ≤ A(n, ε) + 1 +
π2

3

≤

⌈
16C2

p lnn

(1− ε)2∆2
i

⌉
+N0(ε) +Np + 1 +

π2

3

(3.20)

N0(ε) and Np are included since Equation 3.15.

Theorem 5. Let

Xn =

K∑
i=1

Ti(n)

n
Xi,Ti(n) (3.21)

Under the assumption of Theorem 4,

|E[Xn]− µ?| ≤ |δ?n|+O
(
K(C2

p lnn+N0)

n

)
, (3.22)

where N0 = N0(1/2).

Proof. W.l.o.g, we assume there is a unique optimal arm, denoted by arm i?.
By triangle inequality, |µ? − E[Xn]| ≤ |µ? − µ?n|+ |µ?n − E[Xn]|.
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n|µ?n − E[Xn| =
∣∣∣ n∑
i=1

E[X?
t ]− E

[ K∑
i=1

Xi,Ti(n)

]∣∣∣
Separate optimal arm and sub-optimal arms

=
∣∣∣ n∑
i=1

E[X?
t ]− E

[
T ∗ (n)X

?

T?(n)

]∣∣∣+ E
[ K∑
i=1,i6=i?

Xi,Ti(n)

] (3.23)

According to Theorem 4, and by the assumption that 0 ≤ Xi,Ti(n) ≤ 1, the second term is bounded

by O
(
K(C2

p lnn+N0)

)
.

According to Theorem 4, the parameters we can have control are ε, Cp, and n. Therefore, Np
disappears here.

In order to bound the first term in Equation 3.23, let us note that T ?(n)X
?

T?(n) =
∑T?(n)
t=1 X?

t

and we have

Dn
def
=

n∑
t=1

E[X?
t ]− E

[
T?(n)∑
t=1

X?
t

]

= E

[
n∑
t=1

X?
t −

T?(n)∑
t=1

X?
t

]

= E

[
n∑

t=T?(n)+1

X?
t

] (3.24)

Since 0 ≤ Xi,Ti(n) ≤ 1, we can bound the term from above by E[n − T ?(n)], which is just∑
i 6=i? E[Ti(n)] and hence by Theorem 4, Dn = O

(
K(C2

p lnn+N0)

)
Theorem 6. (Lower Bound) Under the assumptions of Theorem 4, there exists some positive
constant ρ such that for all arms i and n, Ti(n) ≥ dρ log(n)e.

Proof.

Theorem 7. Fix any arbitrary δ > 0 and let ∆ = 9
√

2n ln(2/δ). Let n0 be such that

√
n0 ≥ O(K(C2

p lnn0 +N0(1/2))) (3.25)

Then for any n ≥ n0, under the assumptions of Theorem 4 the following bounds hold true:

P(nXn ≥ nE[Xn] + ∆n) ≤ δ (3.26)

P(nXn ≤ nE[Xn]−∆n) ≤ δ (3.27)

Proof.

Theorem 8. (Convergence of Failure Probability) Under the assumptions of Theorem 4 it
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holds that

lim
t→∞

P (It 6= i?) = 0 (3.28)

Proof.

Theorem 9. Consider algorithm UCT running on a game tree of Depth D, branching factor K
with stochastic payoffs at the leaves. Assume that the payoffs lie in the interval [0, 1]. Then the bias
of the estimated expected payoff, Xn, is O((KD log(n) +KD)/n). Further, the failure probability
at the root converges to zero as the number of samples grows to infinity.

Proof.

Let Ft denote a filtration over some probability space, Yt be an Ft-adapted real valued martingale-
difference sequence. Define the partial sum martingale Sn =

∑n
t=1 Yt, n ≥ 1. Use Hoeffding-Azuma

inequality:

Lemma 10. (Hoeffding-Azuma inequality) If Yn is a martingale difference with |Yi| ≤ C, a.s.,
i = 1, 2, ..., where C is a positive real number, then

P(Sn ≥ εn) ≤ exp(−2nε2

C2
) (3.29)

Similarly,

P(Sn ≤ −εn) ≤ exp(−2nε2

C2
) (3.30)

Tail inequality for stopped martingales?

Lemma 11. Let N be an integer-valued random variable and let St be an Ft-adapted real-valued
process (not necessarily a martingale) (t = 0, 1, 2, ...), which is centered: E[St] = 0. Pick any integer
0 ≤ a < b and ε > 0. Then

P(SN ≥ εN) ≤ (b− a+ 1) max
a≤t≤b

P(St ≥ εt) + P(N /∈ [a, b]), (3.31)

P(SN ≤ −εN) ≤ (b− a+ 1) max
a≤t≤b

P(St ≤ −εt) + P(N /∈ [a, b]), (3.32)

Proof.

P(SN ≥ εN) ≤ P(SN ≥ εN, a ≤ N ≤ b) + P(N /∈ [a, b])(According to if N /∈ [a, b], then a ≤ N ≤ b)

= P(SN ≥ εN |a ≤ N ≤ b)P(a ≤ N ≤ b) + P(N /∈ [a, b])

(3.33)
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We also have
P(SN ≥ εN, a ≤ N ≤ b) = E[I(SN ≥ εN)|a ≤ N ≤ b]

≤ E
[ b∑
i=a

I(Si ≥ εi)|a ≤ N ≤ b
]

=

b∑
i=a

P(Si ≥ εi|a ≤ N ≤ b).

(3.34)

The second step follows that if the integer N can make SN ≥ εN , then at [a, b], there must be more
than or equal to one integers (including N) that can meet this requirement.

Therefore, P(SN ≥ εN |a ≤ N ≤ b)P(a ≤ N ≤ b) can be bounded by
∑b
i=a P(Si ≥ εi) (Because

the summation from a from b).
Bounding the term by the maxima of its terms and multiplied by the number of terms, we get

the desired inequality.

Lemma 12. (Hoeffding-Azuma inequality for Stopped Martingales) Assume that St is a
centered matingale such that the corresponding martingale difference process is uniformly bounded
by C. Then, for any fixed ε > 0, integers 0 ≤ a < b, the following inequalities hold:

P(SN > εN) ≤ (b− a+ 1)exp(−2a2ε2/C2) + P(N /∈ [a, b]), (3.35)

P(SN < −εN) ≤ (b− a+ 1)exp(−2a2ε2/C2) + P(N /∈ [a, b]), (3.36)

Proof. The result follows Lemma 10 and 11.

Lemma 13. Let (Zi), i = 1, ..., n be a sequence of random variables such that Zi is conditionally in-
dependent of Zi+1, ..., Zn given Z1,..., Zi−1. Then the Doob martingaleXi = E[f(Z1, ..., Zn)|Z1, ..., Zi]

has bounded differences, in particular

|Xi+1 −Xi| ≤ 2C (3.37)

Proof. Proof omitted.

Now let N =
∑n
i=1 Zi where Zi are 0−1-valued random variables. We assume that Zi is adapted

to the filtration {Fi}t and that Zi+1 is conditionally independent of Zi+2, Zi+3, ..., Zn given Fi.
Note: Our aim is to obtain upper and lower tail bounds for the counting process N .

Lemma 14. We have

P(N − E[N ] > u) ≤ exp(−u2/(2n)). (3.38)

Similarly,

P(N − E[N ] < −u) ≤ exp(−u2/(2n)). (3.39)
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Proof. Note that the function f(z1, ..., zn) = z1 + ...+zn is 1-Lipschitz. Hence, the Doob martingale
Xi = E[N |Z1, ..., Zi] is a bounded difference martingale with bound 2 (According to Lemma 13).
The H-A inequality applied to the centered martingale Xi − E[N ] yields the desired result.

The next result gives an upper tail bound on N when E[
∑n
i=1 Zi] is slowly growing:

Lemma 15. Let Zi be as in Lemma 14, Nn =
∑n
i=1 Zi. Assume that an is an upper bound on

E[Nn]. Then for all ∆ > 0, if n is such that an ≤ ∆/2 then

P(Nn ≥ ∆) ≤ exp(−∆2/(8n)). (3.40)

Proof. We have

P(Nn ≥ ∆) = P(Nn > E[Nn] + ∆− E[Nn]) ≤ P(Nn > E[Nn] + ∆/2) (3.41)

since by the assumption E[Nn] ≤ an ≤ ∆/2.
Use Lemma 14, we obtain the result.

The following technical lemma is at the core of our results for propagating confidence bounds
"upward in the tree":

Lemma 16. Let Zi, Fi, ai be as in Lemma 13. Let {Xi} be an i.i.d sequence with mean µ, and
Yi and Fi-adapted process. We assume that both Xi and Yi lie in the [0, 1] interval. Consider the
partial sums

Sn =

n∑
i=1

(1− Zi)Xi + ZiYi. (3.42)

Fix an arbitrary δ > 0, let ∆ = 9
√

2n ln (2/δ) and let

Rn = E
[∑

i

Xi

]
− E[Sn] (3.43)

Then for n such that an ≤ (1/9)∆ and Rn ≤ (4/9)∆/2,

P(Sn ≥ E[Sn] + ∆) ≤ δ (3.44)

and

P(Sn ≤ E[Sn]−∆) ≤ δ. (3.45)

Proof. Let p = P(Sn ≥ E[Sn] + ∆). We have Sn =
∑n
i=1Xi +

∑n
i=1 Zi(Yi − Xi) ≤

∑n
i=1Xi +

2
∑n
i=1 Zi. Therefore,

p ≤ P
( n∑
i=1

Xi + 2

n∑
i=1

Zi ≥ E
[ n∑
i=1

Xi

]
−Rn + ∆

)
(3.46)
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Using the elementary inequality I(A+B ≥ ∆) ≤ I(A ≥ α∆) + I(B ≥ (1−α)∆) that holds for any
A,B ≥ 0, 0 ≤ α ≤ 1, we get

p ≤ P
( n∑
i=1

Xi ≥ E
[ n∑
i=1

Xi

]
+ ∆/9

)
+ P

(
2

n∑
i=1

Zi ≥ 8/9∆−Rn
)

(3.47)
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Chapter 4

UCT with Laplace Bound

Problem definition:
Consider a bandit problem with K arms, defined by the sequence of random payoffs Xit, i =

1, ...,K, t ≥ 1, where each i is the index of a gambling machine (the “arm” of a bandit). Successive
plays of machine i yield the payoffs Xi1, Xi2, · · ·. For simplicity, we shall assume that Xit lies in
the interval [0, 1]. An allocation policy is a mapping that selects the next arm to be played based
on the sequence of past selections and the payoffs obtained. The expected regret of an allocation
policy A after n plays is defined by Expected cumulative regret is defined as

R = max
i

E[

n∑
t=1

Xit]− E[

K∑
i=1

Ti(n)∑
t=1

Xi,t], (4.1)

where Ti(n) =
∑n
s=1 1(Is = i) is the number of times arm i was played up to time n, It ∈ {1, ...,K}

is the index of the arm selected at time t.
The expected values of the averages

Xin =
1

n

n∑
t=1

Xit (4.2)

converge. We let µin = E[Xin] and

µi = lim
n→∞

µin. (4.3)

Further, we define δin by (Non-stationarity)

µin = µi + δin (4.4)

We start by analyzing UCB1 for non-stationary bandit problems. Remember that by assump-
tion 0 ≤ Xit ≤ 1. Quantities related to the optimal arm shall be upper indexed by a star, e.g.,
µ?, T ?(t), X

?

t , etc. For the sake of easy referencing, we summarize the assumptions on the rewards
here:
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Assumption 1. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that Xitt is {Fit}t-adapted and
Xi,t is conditionally independent of Fi,t+1, Fi,t+2, ... given Fi,t−1. Then 0 ≤ Xit ≤ 1 and the limit
of µin = E[Xin] exists. Further, we assume that there exists a constant Cp > 0 and for all n > 0,

for any δ > 0, ∆n(δ) = 2Cp

√
(n+ 1) ln (K ·

√
n+ 1/δ) 1, the following bounds hold:

P(nXin ≥ nE[Xin] + ∆n(δ)) ≤ δ (4.5)

and

P(nXin ≤ nE[Xin]−∆n(δ)) ≤ δ (4.6)

Set δ to t−1, according to Laplace bound2,

ct,s = ∆s(t
−1)/s = 2Cp

√
(s+ 1) ln (K ·

√
s+ 1 · t)/s = 2Cp

√
(1 +

1

s
) · ln (K · t ·

√
s+ 1)

s
(4.7)

We let ∆i = µ? − µi.

Definition 2. Convergence of δit with ε
Note that we have this definition because of the non-stationary assumption on UCB1 (or UCB-

Laplace). So this part is consistent as original UCT.
Since δit converges by assumption to zero, for all ε > 0 there exists an index N0(ε) such that if

t ≥ N0(ε) then |δit| ≤ ε∆i/2 and |δj?,t| ≤ ε∆i/2, whenever i is the index of a sub-optimal arm and
j? is the index of an optimal arm.

In particular, it follows that for any optimal arm j?, t ≥ N0(ε), |δj?,t| ≤ ε/2 min{i|∆i>0}∆i.

Theorem 3. Consider UCB-Laplace applied to a non-stationary problem where the pay-off se-
quence satisfies Assumption 1 and where the bias sequence ct,s, used by UCB-Laplace is given by
Equation 4.7. Fix ε > 0. Let Ti(n) denote the number of plays of arm i. Then if i is the index of a
suboptimal arm then

E[Ti(n)] ≤
32C2

p

(1− ε)2∆2
i

log
2
√

2dCp
(1− ε)∆iδ

+N0(ε) + 3 + log n (4.8)

Proof. Fix the index i of a suboptimal arm. Let

A0(n, ε) = min{s|ct,s ≤ (1− ε)∆i/2} (4.9)

1Note that here Cp is chosen to be 1√
2

for both UCT and UCT-L.
2We will explain why we set δ to be t−1, instead of t−4 in original UCT paper in the next
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Substituting ct,s and squaring gives

Ti(n)2

Ti(n) + 1
≤ 4

∆2
i (1− ε)2

· 4 · C2
p log

(d
δ

(1 + Ti(n))1/2
)

(4.10)

Rearranging terms

Ti(n) + 1 <
16C2

p

∆2
i (1− ε)2

log
d

δ
+

8C2
p

∆2
i (1− ε)2

log(1 + Ti(n)) (4.11)

By using Lemma 8 of [4], we get that for all Ti(n) ≥ 0

Ti(n) + 1 <
16C2

p

∆2
i (1− ε)2

(
log

8C2
p

∆2
i (1− ε)2

+ 2 log
d

δ

)
, (4.12)

with a =
∆2

i (1−ε)2
8C2

p
(Ti(n) + 1) and b = −2 log d

δ .
Rearranging terms

Ti(n) ≤ 3 +
32C2

p

(1− ε)2∆2
i

log
2
√

2dCp
(1− ε)∆iδ

(4.13)

Note that ct,s holds with confidence 1− δ.
Therefore, suppose at time step t, the failure probability is 1/t. We can bound the number of

plays of arm i for n rounds. With failure probability δ,

Ti(n) ≤ log n (4.14)

By the definition of ct,s, A0(n, ε) = 3 +
32C2

p

(1−ε)2∆2
i

log
2
√

2dCp

(1−ε)∆iδ
. We let

A(n, ε) = max{A0(n, ε), N0(ε)} (4.15)

(There is no Np. The reason why see Assumption 1.)
Therefore we can derive our conclusion

E[Ti(n)] ≤
32C2

p

(1− ε)2∆2
i

log
2
√

2dCp
(1− ε)∆iδ

+N0(ε) + 3 + log n (4.16)

Theorem 4. Let

Xn =

K∑
i=1

Ti(n)

n
Xi,Ti(n) (4.17)

Under the assumption of Theorem 3,

|E[Xn]− µ?| ≤ |δ?n|+O
(
K(C2

p ln(Cpn) +N0)

n

)
, (4.18)
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where N0 = N0(1/2).

Proof. W.l.o.g, we assume there is a unique optimal arm, denoted by arm i?.
By triangle inequality, |µ? − E[Xn]| ≤ |µ? − µ?n|+ |µ?n − E[Xn]|.

n|µ?n − E[Xn| =
∣∣∣ n∑
i=1

E[X?
t ]− E

[ K∑
i=1

Xi,Ti(n)

]∣∣∣
Separate optimal arm and sub-optimal arms

=
∣∣∣ n∑
i=1

E[X?
t ]− E

[
T ∗ (n)X

?

T?(n)

]∣∣∣+ E
[ K∑
i=1,i6=i?

Xi,Ti(n)

] (4.19)

• According to Theorem 3, and by the assumption that 0 ≤ Xi,Ti(n) ≤ 1, the second term is

bounded by O
(
K(C2

p ln(Cpn) +N0)

)
.

Note: According to Theorem 3, the parameters we can have control are ε, Cp, and n.
In order to bound the first term in Equation 4.19, let us note that T ?(n)X

?

T?(n) =
∑T?(n)
t=1 X?

t

and we have

Dn
def
=

n∑
t=1

E[X?
t ]− E

[
T?(n)∑
t=1

X?
t

]

= E

[
n∑
t=1

X?
t −

T?(n)∑
t=1

X?
t

]

= E

[
n∑

t=T?(n)+1

X?
t

] (4.20)

Since 0 ≤ Xi,Ti(n) ≤ 1, we can bound the term from above by E[n − T ?(n)], which is just∑
i 6=i? E[Ti(n)] and hence by Theorem 3, Dn = O

(
K(C2

p ln(Cpn) +N0)

)
.

Theorem 5. (Lower Bound) Under the assumptions of Theorem 3, there exists some positive
constant ρ such that for all arms i and n, Ti(n) ≥ dρ log(n)e.

Proof. Proof is obvious.

Theorem 6. For an arbitraty δ > 0, and let ∆n =
√

2t(1 + 1
t ) ln(

√
t+ 1/δ). Let n0 be such that

√
n0 ≥ O

(
K
(
C2
p ln (Cpn) +N0(1/2)

))
. (4.21)

Then for any n ≥ n0, under the assumptions of Theorem 3 the following bounds hold true:

P(nXn ≥ nE[Xn] + ∆n) ≤ δ (4.22)

and

P(nXn ≤ nE[Xn]−∆n) ≤ δ (4.23)
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Proof. In original UCT paper, this theorem is proved using lemmas of Hoeffding-Azuma inequality
for Stopped Martingales. Let Zt be the indicator of the event that a suboptimal arm is chosen
at time step t. Then by Theorem 3, E[

∑n
t=1 Zt] ≤ O(K ln(n)). Hence, at can be chosen to be

O
(
K
(
C2
p ln (Cpt) +N0(1/2)

))
. Further, we denote Xt as the payoff sequence of the best arm. We

let Yt be the payoff received at time step t. By assumption, Xt, Yt lie in the [0, 1] interval and

nXn =
∑n
t=1(1 − Zt)Xt + ZtYt. Rn = O

(
K
(
C2
p ln (Cpt) + N0(1/2)

))
. Let n0 be an index such

that if n ≥ n0 and Xt and Yt are 1-sub-Gaussian. Such an index exists since ∆n = O(
√
n) and

Rn = O(lnn)Hence, for n ≥ n0, the conditions of Lemma 2.7 in [3] are satisfied and the desired tail-
inequalities hold for Xn. Since for δ < 1, ∆n =

√
2t(1 + 1

t ) ln(
√
t+ 1/δ) >

√
2t(1 + 1

t ) ln(
√
t+ 1),

it follows that n0 can be selected independently of δ. In fact, for a suitable constant of c, n0 is

the first integer such that
√
n0 ≥ c

(
K
(
C2
p ln (Cpn) + N0(1/2)

))
. This finishes the proof of the

theorem.

Theorem 7. (Convergence of Failure Probability) Under the assumptions of Theorem 3 it
holds that

lim
t→∞

P(It 6= i?) = 0 (4.24)

The reason why we need this theorem is that we want the probability of suboptimal choices would
converge to zero.

Proof. Unlike in [5], using Laplace bound, we can have control of failure probability, therefore, by
selecting δ to be 1/t at every time step t, we can decrease P(It 6= i?) to 0 with t→∞. This is also
one of the advantages of Laplace bound.

Theorem 8. Consider algorithm UCT running on a game tree of depth D, branching factor K
with stochastic payoffs at the leaves. Assume that the payoffs lie in the interval [0, 1]. Then the bias
of the estimated expected payoff, Xn, is O((KD log(n) +KD)/n). Further, the failure probability
at the root converges to zero as the number of samples grows to infinity.

Proof. The proof is done by induction on D. Consider first the case D = 1 (in this case, actually,
UCT just corresponds to UCB1). Our assumptions on the payoffs hold, thanks to Laplace bound.
Now the result on the bias follows directly from Theorem 4 and consistency follows from Theorem
7.

Now, assume that the result holds for all trees of up to depth D − 1 and consider a tree of
depth D. Let us only concentrate on the root node. We claim that from the point of the root
node, running UCT is equivalent to running UCB1 with non-stationary, correlated payoffs for the
various moves (arms). Fix a move i. In fact, the payoff for move i of the root at time t will
depend on all previous “entries” into the subtree originating at the successor node of move i. For
simplicity we shall denote this node by i, as well. We claim that the payoff process experienced at
node i will satisfy the conditions required by Theorems 3-7. First, the payoffs lie in the interval
[0, 1]. Now, since the tree starting at node i has depth D − 1, by the induction hypothesis we may
apply Theorem 4 to show that the expected average payoff converges. That the conditions on the
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exponential concentration of the payoffs are satisfied follows from Theorem 6. Since this holds for
any i, it follows by Theorem 4 that the bias at the root converges at the rate of

|δ?n|+O(K(lnn+N0)/n), (4.25)

where δ?n is the rate of convergence of the bias for the best move and

N0 = min
{
n
∣∣|δin| ≤ 1

2
∆i, i 6= i?

}
. (4.26)

Now, by the induction hypothesis,

|δin| = O((K(D − 1) lnn+KD−1)/n), , i = 1, ...,K (4.27)

Hence, N0 = O(KD−1), yielding the desired result for the bias at the root. The proof is finished
by noting that the failure probability converges to zero thanks to Theorem 7.

Note that it follows from the proof that when the payoffs are deterministic then the bias terms
prescribe too much exploration at the nodes immediately preceding the leaves. Here, no exploration
would be needed at all. This can be achieved gradually by making the bias more uniform. From
this, one might conjecture that more uniform bias terms are desirable in the vicinity of the leafs.
Indeed, it is reasonable to use stronger exploration bonus close to the root: at the beginning of runs
the large unexplored parts of the tree can be expected to behave “randomly”.

In fact, for deterministic problems, convergence can be shown for a larger class of bias terms:
the role of the bias term can be viewed as taking care of the shifts in the payoff in the subtrees as
time goes by. However, we do not pursue this direction further in this paper.

Lemma 9. (Lemma 2.6 in [3] Time-uniform concentration inequalities) Let Xi1, ..., Xin

be a sequence of n i.i.d. real valued random variables bounded in [0, 1], and the limit µin = E[Xin]

exists. Then, for all δ ∈ (0, 1), it holds

P
(
∃n ∈ N, nXin − nE[Xin] ≥ 2Cp

√
(n+ 1) ln(K

√
n+ 1/δ)

)
≤ δ (4.28)
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