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Chapter 1

UCB1 with Markov’s Inequality

Regret analysis guidelines:
1. Decompose the regret over the arms.
2. On a "good" event prove that the sub-optimal arms are not played too often.
3. Show that the "good" event occurs with high probability.

Suppose X7i, ..., X7 is a sequence of independent Gaussian random variables, with mean p and

variance 1. The mean is i = + Zle X;. For any 0 € (0,1),
2log(1/6
B>+ 1) 2B < 5 (1)
R 2log(1/6
P(uéu—\/#)gé

E[X]
C

Similarly,

Markov inequality:

P(X > C) < (1.3)



If X ~N(0,1),

N 1
P> pte) = P(530, Xe 2 it e)

=P(3, 1 (Xe —p) > €T)
= ]P’(exp(/\ziT:l(Xt —w) > exp(/\eT))
Apply Markov Inequality

< exp(—)\eT)IE[eXp(AZZT:l(Xt — )]

= exp(—AeT) H?zlexp()\Q/Q) (1.4)
AT
= eXp(_ET)\ + T)
To minimize the above, choose A = ¢
2T
=op(=5)

According to Equation [T.1] and [[:2]
=4

Regret decomposition:
Define A, = p* — i, and T, (t) = SL_ 1(As = a)

Ry =np* —E[>_ Ry]
t=1

_EY A (15)

=E[)_ > 1A =a)A,]

t=1acA

= Z ALE[T,(n)]

acA

Assumption 1. Assume that the estimated value of arm a is not too large. In other words, it is

smaller than the true value plus the confidence interval.

a ————= > [t —1 1.6
o\ gy gy 2 et =) (16)
Assumption 2. Assume that the estimated value of the optimal arm a* is not too small, so that

it would not be underestimated and not selected.

2log(1/0)

-1 =" (17)

flar (t - 1) +



Now suppose A; = a in round t,

According to Equation [1.6

2log(1/6) _ . 21og(1/0)
et 2| =——" >0t —1 —_—
Hat 2\ 7oy Zhalt =D+ [Ty
Optimal arm is not selected (1.8)
X 2log(1/6)
> figr (t — 1) Tor(t—1)
> /,La*
= Ha + A,
Therefore, we can obtain
2log(1/9)
——= > A, 1.
Ta(t_ 1) N ( 9)
Simultaneously,
SIOg%
T.(t—1) < A2 (1.10)
If good event happens (Assumption 1 and 2):
8log &
T.(n) <1+ N 0 (1.11)

Let fi, s be the empirical mean of arm a after s plays. The concentration theorem shows that

21log(1/9)

P(fia,s > pra + .

)< 6 (1.12)

Combining with a union bound, defined as P({J, B;) < >, P(B;)

P(3s<n:figs > ta+ M) <nd (1.13)

- S

Now we know when the bad event happens, a sub-optimal arm can be played n times with prob-

ability 2nd, where 2 means we have to apply concentration bounds upper and lower. The regret



bound is then
Ro =Y AE[T.(n)]
acA

8log(1/0)

< ) A2 414 )

a€A:Aq>0
Choose § = 1/n?

< > 3, + L010s(n)

(1.14)



Chapter 2

UCB1 with Chernoff-Hoeftfding
Inequality

Theorem 1. For all K > 1, if policy UCBI is run on K machines having arbitrary reward
distribution Py, ..., Py with support in [0, 1], then its expected regret after any number n of plays is

at most

53 (5] (10 ) (1) 2

D <pL* ' Jj=1

where 1, ..., i are the expected values of P, ..., Py.

Fact 2. (Chernoff-Hoeffding bound) Let X, ..., X, be random variables with common range
[0,1] and such that E[X;|X;,...,X¢—1] = . Let S, = X1 +---+ X,,. Then for alla >0

P(Sn > nu+ a) < em2a°/n (2.2)
Similarly,

P(S, <np—a) < e=2a%/n (2.3)
Proof. Let c; s = % We need to upper bound T;(n) on any sequence of plays. More precisely,

for each t > 1, we bound the indicator function of I, = i as follows. Let | be any positive inteter.



n
Ti(n) =1+ Z {I, =i} Every arm visited once
t=K+1

Sum over how many times an arm gets visited after [ plays

n

<l+ > {Li=i,T(t—1)>1}
t=K+1

Sum over how many times the UCB of the selected arm larger than the optimal arm after [ plays
n
- _
<l+ Z {XT*(FU +em1ret—1) < Xim—1) T -1, e—1), Lt — 1) > l}
t=K+1
For any ¢, the optimal arm ¢* can be played stimes, where s € (0,1)
The arm ¢ can be played s; times, where s; € (I, )
Therefore, if the worst case happens,

the minimum value of the optimal arm is less than the maximum value of the arm in their time step range

n
<l+ Z {Omintyz +ci—1,s < lmax qul + Ct—l,s,:}

<s< <s;<t
t=K+1
Rearrange
co t—1 t—1
S I+ZZ Z {Yg +Ct,s S Y7,',51' +ct,si}
t=1 s=1 s;=I
(2.4)
Now observe that Y: +oes < Ymi + c,5, implies one of the following must hold
X < p* — ¢,5(Underestimate optimal arm) (2.5)
Yi,si 2 Hi + Ct,s; (26)
Wt < i+ 2, (2.7)
First, bound the probability events of [2.5] and [2.6] using Fact [2]
IP’(Y: <pt - cm) < e At — =4 (2.8)
]P)(Yi,s,, Z i —+ Ct,si,) S e*4lnt — t74 (29)



To make [2.7|false, I = [(81nn)/A?]

Therefore, for s;

E[Ti(n)] <

<

B = i = 205, = 5 — g — 2¢/2(Int)/s;
>t = — A (2.10)
=0

> (81nn)/A?, we can get

t—1 t—1

81nn e - —x
+ZZ Z (P(Xs SM*_Ct,s)+P(X1 sy = i + ¢, S'L))
=15=1 = [(81nn)/A2]
[e’s} t t
81 .
nn +Z 2t_4 (2 11)
t=1 s=1s;=1
81nn+1+ 2
A? 3
O



Chapter 3

Upper Confidence Bounds applied to
Trees (UCT)

Problem definition:

Consider a bandit problem with K arms, defined by the sequence of random payoffs X;;, i =
1,..., K, t > 1, where each 7 is the index of a gambling machine (the “arm” of a bandit). Successive
plays of machine 7 yield the payoffs X;1, X0, - -. For simplicity, we shall assume that X;; lies in
the interval [0,1]. An allocation policy is a mapping that selects the next arm to be played based
on the sequence of past selections and the payoffs obtained. The expected regret of an allocation

policy A after n plays is defined by Expected cumulative regret is defined as

n K Ti(n)
R = m?xE[Z Xl —ED Y Xidl, (3.1)
t=1 =1 t=1

where T;(n) = >."_, 1(I = i) is the number of times arm i was played up to time n, I, € {1,..., K}

s=1

is the index of the arm selected at time ¢.

Remark 1. There is no policy whose regret would grow slower than O(lnn) for a large class of

payoff distributions [I].

Algorithm UCBI, whose finite-time regret is studied in [2]. It chooses the arm with the best

upper confidence bound:

I; = argmax {Yi,Ti(t—l) + Ct—l,T,i(t—l)}a (3.2)
ie{1,...,.K}

where ¢; s is a bias sequence chosen to be

2Int
Crs =] — (3.3)




The bias sequence is such that if X;; were i.i.d. (or form a martingale difference process shifted by

a constant) then the inequalities

P(Xis > pii + ) <71 (34)
and

P(Xis < pi+ers) <t (3.5)

This follows from Hoeffding’s (or more generally, the Hoeffding Azuma) inequality (see Lemma 8).
Unlike in [2], we we allow the mean-value of the payoffs Xi- to drift as a function of time.

Laplace bound from Chapter 2 in [3]:

N
P(%Zzi za\/2(1+;/,)ln( W) <6 (3.6)

The expected values of the averages

_ 1 &
Xin=-> Xu (3.7)
i3
converge. We let p1;, = E[X;,] and
W = m pigg,. (3.8)
n— oo

Further, we define d;,, by (Non-stationarity)
Pin = i + Oin (3.9)

We start by analyzing UCBI1 for non-stationary bandit problems. Remember that by assump-
tion 0 < X;; < 1. Quantities related to the optimal arm shall be upper indexed by a star, e.g.,
we, T*(t),yz, etc. For the sake of easy referencing, we summarize the assumptions on the rewards

here:

Assumption 2. Fix 1 < i < K. Let {F;;}+ be a filtration such that X, is {F; };-adapted and
X+ is conditionally independent of F; 111, Fi¢42, ... given F; ;1. Then 0 < X;; <1 and the limit

of pin, = E[X;,] exists. Further, we assume that there exists a constant C), > 0 and an integer N,
such that for n > N, for any § > 0, A, () = Cp+/nIn(1/6), the following bounds hold:

P(nXin > nE[X ] + An(8)) <6 (3.10)
and

P(nX;pn < nE[Xin] — An(6)) < 6 (3.11)



Set § to t—*, according to Hoeffding’s inequality,

1
cio = At /s = Cp\/s-4-In(t) /s = 20, ? (3.12)
We let A; = pu* — p;.

Definition 3. Convergence of §;; with €
Since d;; converges by assumption to zero, for all € > 0 there exists an index Ny(e€) such that if
t > No(e) then |0;| < eA;/2 and |, ¢| < €A;/2, whenever i is the index of a sub-optimal arm and

j* is the index of an optimal arm.
In particular, it follows that for any optimal arm j*, t > No(e), [0;+ ¢| < €/2ming|a, >0y As.

Theorem 4. Consider UCBI1 applied to a non-stationary problem where the pay-off sequence
satisfies Assumption [2 and where the bias sequence ¢ s, used by UCBI is given by Equation
Fix € > 0. Let T;(n) denote the number of plays of arm 4. Then if 4 is the index of a suboptimal

arm then
16C21Inn 2
E[Ti(n)] < —25-— + N Np+1+— 3.13
[ (n)]— (176)2A$+ 0(6)+ P+ + 3 ( )
Note that here Ny(€) comes from Definition [3{and NNV, comes from Assumption
Proof. Fix the index i of a suboptimal arm. We follow the proof of Theorem 1 in [2]. Let
Ap(n,e) = min{s|e, s < (1 —€)A;/2} (3.14)
Note here the reason why (1 — €) is related to bound bad events later.
2
By the definition of ¢; 5, Ag(n,€) = [(116_0:’%} We let
A(n,€) = max(Ap(n, ), No(€), Np) (3.15)
By definition,
Tin) =1+ > T(L=1i)
t=K+1
<A+ 3 Il =i Tt —1) = An,e)) (3.16)
t=K+1
n t—1

e Forn>1t> s > A(n,¢€), we have uj > ;¢ + 2¢4,. (Note that we assume after n time steps,

we will not play sub-optimal arms.)

e Indeed, since n >t and ¢; ¢ increases in ¢, ¢; o < Cp g

11



e Since ¢; s decreases in s, and 5" > A(n,€) > Ag(n,€), cns' < Cp ag(n,e)-

By the definition of Ag, ¢, 40(n,e) < (1 — €)A;/2 (Equation (3.14))
Hence, 2¢; o < (1= €)Ai. (Cn,sr < Cpag(n,e))

Since t > A(n,€) > Ny(e€), we have that d;; < eA;. (if t > Ny(e) then |6;:] < eA;/2)

Hence, i — pit —2ct,60 = A — |07 — 0t — 2¢1.90 > Ay — €Ny — (1 —€)A; = 0. (tin = i + Jin)

From [2], observing Y: +crs < Xis, + 15, one of the following must hold

%

Xs < H* — Ct,s

Xi,si 2 i + Ct,s;

W< i+ 2,

Hence, H(Y: + Ct,s < Yi,si, + Ct73) S I[(Y: S ,u* — Ct,s) + H(YZ,& > i =+ Ct,si)~

(3.17)

(3.18)

(3.19)

Similar to chapter 1, now we can bound the two bad events using Equation [3.4] and which

is equivalent to 2¢t~%.

2

E[Ti(n)] < A(n,€) + 1+ %

< 16013 Inn N N1 2
< m + No(e) + N, + +?
Ny(€) and N, are included since Equation
Theorem 5. Let
K
Xn:Z n X27T7(n)
i=1
Under the assumption of Theorem [4]
|E[Yn] _ M*| < |57*1| + @(K(CEIHTH_NO))
n

where NO = N0(1/2)

Proof. W.l.o.g, we assume there is a unique optimal arm, denoted by arm i*.

By triangle inequality, 11" — E[X,]| < [7* — 7| + |75, — E[X]].

12

(3.20)

(3.21)

(3.22)



n K
nlfT, — EXn| = | Y B —E[ Y Kinw)|
i=1 i=1
Separate optimal arm and sub-optimal arms (3.23)
n o K o
_ ‘ S E[X;]—E [T * (n)XT*(n)} ‘ + IE[ 3 XLTi(n)}
i=1 i=1, i
According to Theorem and by the assumption that 0 < Yini(n) < 1, the second term is bounded
by O <K(C§ Inn+ Ng)) .
According to Theorem E[, the parameters we can have control are €, Cp,, and n. Therefore, N,
disappears here.

In order to bound the first term in Equation let us note that T*(n)y*T*(n) = Zgl(”) X

and we have
n T*(n)
D, E3 EIX-E| Y X;]
t=1 t=1
n T*(n)
SXr- > Xt*] (3.24)
t=1 t=1
> x

t=T*(n)+1

=E

=E

Since 0 < Yi@(n) < 1, we can bound the term from above by E[n — T*(n)], which is just
> izi+ E[Ti(n)] and hence by Theorem D,=0 (K(Cf, Inn + NO)) O

Theorem 6. (Lower Bound) Under the assumptions of Theorem [4] there exists some positive

constant p such that for all arms ¢ and n, T;(n) > [plog(n)].
Proof. O

Theorem 7. Fix any arbitrary § > 0 and let A = 94/2n1n(2/6). Let ng be such that
Vo > O(K(C3Inng + No(1/2))) (3.25)

Then for any n > ng, under the assumptions of Theorem [4] the following bounds hold true:

PnX, > nE[X,]+A4A,) <§ (3.26)
P(nX, <nE[X,]—A,) <6 (3.27)
Proof. O

Theorem 8. (Convergence of Failure Probability) Under the assumptions of Theorem [4] it

13



holds that

lim P(I, #i*) =0 (3.28)

t—o0
Proof. O

Theorem 9. Consider algorithm UCT running on a game tree of Depth D, branching factor K
with stochastic payoffs at the leaves. Assume that the payoffs lie in the interval [0, 1]. Then the bias
of the estimated expected payoff, X, is O((K Dlog(n) + K”)/n). Further, the failure probability
at the root converges to zero as the number of samples grows to infinity.

Proof. O

Let F; denote a filtration over some probability space, Y; be an F;-adapted real valued martingale-
difference sequence. Define the partial sum martingale S,, = Z?Zl Y:, n > 1. Use Hoeffding-Azuma

inequality:

Lemma 10. (Hoeffding-Azuma inequality) If Y;, is a martingale difference with |Y;| < C, a.s.,

1 =1,2,..., where C is a positive real number, then
2ne?
P(S, > en) < exp(— o2 ) (3.29)
Similarly,
2ne>
P(S, < —en) < exp(— o2 ) (3.30)

Tail inequality for stopped martingales?

Lemma 11. Let N be an integer-valued random variable and let Sy be an F;-adapted real-valued
process (not necessarily a martingale) (¢t = 0,1,2,...), which is centered: E[S;] = 0. Pick any integer
0<a<bande>0. Then

P(Sy >eN) < (b—a+1) rgglé(b]P’(St > et) + P(N ¢ [a,b]), (3.31)
P(Sx < —eN) < (b a+1) max B(S, < ~e) + B(N ¢ [a,b]), (332)

Proof.
P(Sy > eN) <P(Sy > eN,a < N <b) +P(N ¢ [a,b])(According to if N ¢ [a,b], then a < N < b)

BP(a < N < b) +P(N ¢ [a,b))
(3.33)

14



We also have
P(Sy > eN,a < N <b) =E[I(Sy > eN)ja < N < b

< E[zbjﬂ(si > ei)ja < N < b}

1=a

(3.34)
b
= P(S; > €ila < N <b).

The second step follows that if the integer N can make Sy > €N, then at [a, b], there must be more
than or equal to one integers (including N) that can meet this requirement.

Therefore, P(Sy > eNja < N < b)P(a < N < b) can be bounded by Z?:a P(S; > €i) (Because
the summation from a from b).

Bounding the term by the maxima of its terms and multiplied by the number of terms, we get

the desired inequality. O

Lemma 12. (Hoeffding-Azuma inequality for Stopped Martingales) Assume that S; is a
centered matingale such that the corresponding martingale difference process is uniformly bounded

by C. Then, for any fixed € > 0, integers 0 < a < b, the following inequalities hold:

P(Sy > eN) < (b— a+ 1)exp(—2a*€*/C?) + P(N ¢ [a,D]), (3.35)
P(Sy < —eN) < (b— a+ 1)exp(—2a%¢?/C?) + P(N ¢ [a,b]), (3.36)
Proof. The result follows Lemma [T0] and [T1] O

Lemma 13. Let (Z;), i = 1,...,n be a sequence of random variables such that Z; is conditionally in-
dependent of Z; 11, ..., Z,, given Zy,..., Z;_1. Then the Doob martingale X; = E[f(Z1, ..., Z,)|Z1, ..., Z]

has bounded differences, in particular
| Xi1 — Xi| <2C (3.37)

Proof. Proof omitted. O

Now let N = Z?:l Z; where Z; are 0—1-valued random variables. We assume that Z; is adapted
to the filtration {F;}; and that Z;1, is conditionally independent of Z;. 5, Z;13, ..., Z, given F;.

Note: Our aim is to obtain upper and lower tail bounds for the counting process N.

Lemma 14. We have
P(N —E[N] > u) < exp(—u?/(2n)). (3.38)
Similarly,

P(N — E[N] < —u) < exp(—u?/(2n)). (3.39)

15



Proof. Note that the function f(z1, ..., 2n) = 21 +...+ 2, is 1-Lipschitz. Hence, the Doob martingale
X; = E[N|Zy, ..., Z;] is a bounded difference martingale with bound 2 (According to Lemma [13)).
The H-A inequality applied to the centered martingale X; — E[N] yields the desired result. O

The next result gives an upper tail bound on N when E[>"" | Z;] is slowly growing:

Lemma 15. Let Z; be as in Lemma N, = 2?21 Z;. Assume that a, is an upper bound on
E[N,]. Then for all A > 0, if n is such that a, < A/2 then

P(N, > A) < exp(—A?/(8n)). (3.40)
Proof. We have
P(N,, > A) = P(N,, > E[N,,] + A — E[N,]) <P(N,, > E[N,| + A/2) (3.41)

since by the assumption E[N,,] < a,, < A/2.
Use Lemma we obtain the result. O

The following technical lemma is at the core of our results for propagating confidence bounds

"upward in the tree":

Lemma 16. Let Z;, F;, a; be as in Lemma 13. Let {X;} be an i.i.d sequence with mean p, and
Y; and F;-adapted process. We assume that both X; and Y; lie in the [0, 1] interval. Consider the

partial sums

Sp=> (1-Z)X; + Z;Yi. (3.42)
i=1

Fix an arbitrary 6 > 0, let A =94/2n1n(2/4) and let
R, = E{Z XZ} —E[S,] (3.43)

Then for n such that a, < (1/9)A and R, < (4/9)A/2,

P(S, > E[S,] +A) <é (3.44)
and

P(S, <E[S,] —A) <. (3.45)

Proof. Let p = P(S,, > E[S,] + A). We have S,, = > X; + >0 Zi(Yi— X;) <> Xi+
23" | Z;. Therefore,

pgp(znjximzn:zizz@{ixi}—Rn+A) (3.46)
=1 1=1 1

1=

16



Using the elementary inequality I{(A+ B > A) < I(A > aA)+I(B > (1 — «)A) that holds for any
A,B>0,0<a<1, we get

n

pﬁP(iXiZ]E{ZXZ} +A/9>+P(2i2i28/9A—Rn) (3.47)

i=1 i=1

O

17



Chapter 4

UCT with Laplace Bound

Problem definition:

Consider a bandit problem with K arms, defined by the sequence of random payoffs X;;, i =
1,..., K, t > 1, where each i is the index of a gambling machine (the “arm” of a bandit). Successive
plays of machine i yield the payoffs X;1, X0, - -. For simplicity, we shall assume that X;; lies in
the interval [0,1]. An allocation policy is a mapping that selects the next arm to be played based
on the sequence of past selections and the payoffs obtained. The expected regret of an allocation
policy A after n plays is defined by Expected cumulative regret is defined as

n K Ti(n)

R = m?XE[Z Xl =B > Xidl, (4.1)

t=1 i=1 t=1

where T;(n) = Y, 1(I; = i) is the number of times arm ¢ was played up to time n, I; € {1,..., K}
is the index of the arm selected at time ¢.

The expected values of the averages

_ 1 &
Xin==> Xu (4.2)
i
converge. We let p1;, = E[X;,] and
Wi = nh_)ngo Min- (4.3)

Further, we define d;,, by (Non-stationarity)
Win = i + Oin (4.4)

We start by analyzing UCBI1 for non-stationary bandit problems. Remember that by assump-
tion 0 < X;; < 1. Quantities related to the optimal arm shall be upper indexed by a star, e.g.,
we, T*(t),yz, etc. For the sake of easy referencing, we summarize the assumptions on the rewards

here:

18



Assumption 1. Fix 1 < i < K. Let {F;;}+ be a filtration such that X;;; is {F;:}+-adapted and
X+ is conditionally independent of F; 141, Fi¢42, ... given F; ;1. Then 0 < X;; <1 and the limit

of pin, = E[X 5] exists. Further, we assume that there exists a constant C), > 0 and for all n > 0,

for any 6 > 0, A, () = QCP\/(n +1)In(K - v/n+1/0) ['{ the following bounds hold:

P(nX,, > nE[Xn] +A,(8) <6 (4.5)
and

Set § to t~!, according to Laplace boundEI,

crs = As(t71) /s = 201,\/(3+1)1n([(.\/m.t)/5 — QCp\/(H- é) _ ln(K-t;\/m)

(4.7)

We let A; = p* — py.

Definition 2. Convergence of §;; with €

Note that we have this definition because of the non-stationary assumption on UCB1 (or UCB-
Laplace). So this part is consistent as original UCT.

Since ;¢ converges by assumption to zero, for all € > 0 there exists an index Ny(¢) such that if
t > No(e) then [6;] < eA;/2 and |;+ +| < €A;/2, whenever i is the index of a sub-optimal arm and

j* is the index of an optimal arm.
In particular, it follows that for any optimal arm j*, t > No(€), [0;+ | < €/2minga, >0y A

Theorem 3. Consider UCB-Laplace applied to a non-stationary problem where the pay-off se-
quence satisfies Assumption |I| and where the bias sequence ¢, 5, used by UCB-Laplace is given by
Equation Fix € > 0. Let T;(n) denote the number of plays of arm i. Then if 7 is the index of a

suboptimal arm then

32C2 21/2dC
E[T; < P P N 1 4.
[ 1(”)] = (1—6)2A% 0g (1—6)A15+ 0(6)+3+ ogn ( 8)
Proof. Fix the index i of a suboptimal arm. Let
Ap(n,e) = min{s|e; s < (1 —€)A;/2} (4.9)

!Note that here Cj, is chosen to be % for both UCT and UCT-L.
2We will explain why we set 6 to be t—1, instead of t=* in original UCT paper in the next

19



Substituting c; s and squaring gives

Tl(n)Q < 4
Ti(n)+1 = AZ(1—¢)

d
54 C2log (S(1+Ti(n)?)

Rearranging terms

16C? d 8C?
Ti(n) +1 < —5—L—log - +

A2(1—e2 70 Ag(life)zlog(HTi(n))

By using Lemma 8 of [4], we get that for all T;(n) > 0

oL 162 (o sc2 o4
W +l< a—gr | 8 az g T 2185 |

A?s(;%_ge)z(Ti(n) +1) and b= —2log g.

Rearranging terms

with a =

3202 21/2dC,
) < p p
L) <34 = 2az 8 T 9an

Note that ¢; s holds with confidence 1 — 4.

(4.10)

(4.11)

(4.12)

(4.13)

Therefore, suppose at time step ¢, the failure probability is 1/t. We can bound the number of

plays of arm i for n rounds. With failure probability &,

T;(n) <logn

32C7
(I—e)2A?

By the definition of ¢y, Ag(n,€) = 3 + log 2Y2Cr. We let

176)A15 :

A(n,e) = max{Ag(n,e), No(e)}

(There is no Np,. The reason why see Assumption [I])

Therefore we can derive our conclusion

32C?2 2V/2dC,

E[’Tl(n)] < (1 — E)QA? 0og (1 _ e)A@fS

+ No(€) +3 +logn

Theorem 4. Let

— T —
Xy = Z l(n)Xi,Ti(n)

‘ n
i=1

Under the assumption of Theorem [3]

_ K(C%In(Cyn) + N,
] - < ) + o H e LT,

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



where Ny = Ny(1/2).

Proof. W.l.o.g, we assume there is a unique optimal arm, denoted by arm *.
By triamgle inequality, |u* — E[X,]| < [ — 75| + 75 — E[X.]I.

n K
nlfT, — EXn| = | B —E[ Y Kinw)|
i=1 =1

Separate optimal arm and sub-optimal arms (4.19)
n K
= | BN - E[Tx )% (| [+ B[ Y Kimiw)]
i=1 i=1,ii*
e According to Theorem [3, and by the assumption that 0 < Y’L’7T1ﬂ(n) < 1, the second term is
bounded by O <K(C’§ In(Cpn) + N0)>.
Note: According to Theorem [3| the parameters we can have control are €, C),, and n.

In order to bound the first term in Equation let us note that T*(n)Y;*(n) = Zgl(") X

and we have
n T*(n)
D, E3 EIX-E| Y X;]
t=1 t=1
n T*(n)
SXr- > Xt*] (4.20)
t=1 t=1
> x

t=T"*(n)+1

=E

=E

Since 0 < Yi,Ti(n) < 1, we can bound the term from above by E[n — T*(n)], which is just
>iziv B[T;(n)] and hence by Theorem D,=0 (K(Cf, In(Cpn) + Ng)). O

Theorem 5. (Lower Bound) Under the assumptions of Theorem [3] there exists some positive

constant p such that for all arms ¢ and n, T;(n) > [plog(n)].

Proof. Proof is obvious. O

Theorem 6. For an arbitraty 6 > 0, and let A,, = \/Qt(l + 1)In(v/t +1/6). Let ng be such that

Vg > O(K(Cg In (Cpn) + N0(1/2))). (4.21)
Then for any n > ng, under the assumptions of Theorem [3] the following bounds hold true:
P(nX, > nE[X,] +A,) <6 (4.22)
and

P(nX, < nE[X,] — A,) <6 (4.23)



Proof. In original UCT paper, this theorem is proved using lemmas of Hoeffding-Azuma inequality
for Stopped Martingales. Let Z; be the indicator of the event that a suboptimal arm is chosen
at time step ¢. Then by Theorem (3, E[>";" , Z;] < O(K In(n)). Hence, a; can be chosen to be

O(K(C’g In (Cpt) + N0(1/2))>. Further, we denote X; as the payoff sequence of the best arm. We
let Y; be the payoff received at time step t. By assumption, Xy, Y; lie in the [0, 1] interval and
nX, =Y, (1= Z)Xe + Z;Y;. R, = O(K(C’g In (Cpt) + NO(1/2))>. Let ng be an index such
that if n > np and X; and Y; are 1-sub-Gaussian. Such an index exists since A,, = O(y/n) and
R,, = O(Inn)Hence, for n > ng, the conditions of Lemma 2.7 in [3] are satisfied and the desired tail-
inequalities hold for X,. Since for § < 1, A,, = \/Qt(l + 1) In(vt+1/8) > \/215(1 + 1) In(vt + 1),

it follows that ng can be selected independently of §. In fact, for a suitable constant of ¢, ng is

the first integer such that /ng > c(K(Cg In (Cyn) + N0(1/2))). This finishes the proof of the

theorem. O

Theorem 7. (Convergence of Failure Probability) Under the assumptions of Theorem [3| it
holds that

tlinolo P(L; #£i*)=0 (4.24)

The reason why we need this theorem is that we want the probability of suboptimal choices would

converge to zero.

Proof. Unlike in [5], using Laplace bound, we can have control of failure probability, therefore, by
selecting ¢ to be 1/t at every time step ¢, we can decrease P([; # i*) to 0 with ¢ — co. This is also
one of the advantages of Laplace bound. O

Theorem 8. Consider algorithm UCT running on a game tree of depth D, branching factor K
with stochastic payoffs at the leaves. Assume that the payoffs lie in the interval [0, 1]. Then the bias
of the estimated expected payoff, X,,, is O((K D log(n) + KP)/n). Further, the failure probability

at the root converges to zero as the number of samples grows to infinity.

Proof. The proof is done by induction on D. Consider first the case D = 1 (in this case, actually,
UCT just corresponds to UCB1). Our assumptions on the payoffs hold, thanks to Laplace bound.
Now the result on the bias follows directly from Theorem [4] and consistency follows from Theorem
[

Now, assume that the result holds for all trees of up to depth D — 1 and consider a tree of
depth D. Let us only concentrate on the root node. We claim that from the point of the root
node, running UCT is equivalent to running UCB1 with non-stationary, correlated payoffs for the
various moves (arms). Fix a move ¢. In fact, the payoff for move i of the root at time ¢ will
depend on all previous “entries” into the subtree originating at the successor node of move i. For
simplicity we shall denote this node by i, as well. We claim that the payoff process experienced at
node ¢ will satisfy the conditions required by Theorems 3-7. First, the payoffs lie in the interval
[0,1]. Now, since the tree starting at node ¢ has depth D — 1, by the induction hypothesis we may
apply Theorem [ to show that the expected average payoff converges. That the conditions on the

22



exponential concentration of the payoffs are satisfied follows from Theorem [6] Since this holds for

any ¢, it follows by Theorem [ that the bias at the root converges at the rate of
|6x| + O(K(Inn + Ny)/n), (4.25)
where 4} is the rate of convergence of the bias for the best move and
Ny = min {n|[d;,| < %Ai,i £t} (4.26)
Now, by the induction hypothesis,
0in] = O(K(D — 1) Inn+ KP~Y)/n), i=1,..,K (4.27)

Hence, Ny = O(KP~1), yielding the desired result for the bias at the root. The proof is finished
by noting that the failure probability converges to zero thanks to Theorem [7]

Note that it follows from the proof that when the payoffs are deterministic then the bias terms
prescribe too much exploration at the nodes immediately preceding the leaves. Here, no exploration
would be needed at all. This can be achieved gradually by making the bias more uniform. From
this, one might conjecture that more uniform bias terms are desirable in the vicinity of the leafs.
Indeed, it is reasonable to use stronger exploration bonus close to the root: at the beginning of runs
the large unexplored parts of the tree can be expected to behave “randomly”.

In fact, for deterministic problems, convergence can be shown for a larger class of bias terms:
the role of the bias term can be viewed as taking care of the shifts in the payoff in the subtrees as

time goes by. However, we do not pursue this direction further in this paper. O

Lemma 9. (Lemma 2.6 in [3] Time-uniform concentration inequalities) Let X1, ..., X;,

be a sequence of n i.i.d. real valued random variables bounded in [0, 1], and the limit p;, = E[X ;]
exists. Then, for all 6 € (0,1), it holds

IP’(EIn €N, nX s — nE[Xin] > 20,,\/ (n+1)In(Kvn + 1 /5)) <6 (4.28)
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