
RandUCB Optimization

Yutong Yan

Outline
● Randomized upper confidence bound (RandUCB)
● Projection onto simplex
● Bandit instances settings
● Deep learning approach
● Evolution strategy approach
● Results
● Future work

Multi-armed bandit
● Maximize

● By choosing optimal action:

 , where

● Minimize expected regret:

Randomized upper confidence bound (RandUCB)

● Upper Confidence Bound (UCB)
○ The policy to select the arm is

● RandUCB
○ The policy to select the arm is

The sampling distribution

● Consider a discrete distribution on [L, U]
● There are M points in the distribution

● UCB algorithm: M=1, L=U=𝛽
● Optimistic: L=0
● Non-optimistic: L=-U

 Motivation of this work

● RandUCB uses a truncated Gaussian distribution [1]
○ Works fine for MAB, Linear bandits (LB)
○ Fails at tree search bandits

● The goal of this work
○ Finds a discrete probability distribution
○ Outperforms Gaussian distribution
○ Works in all bandit variants

Projection Method

● We implement the projection method proposed in [2]

Bandit Instances Setting
● Bandit class

○ Easy class: means uniformly sampled from [0.25, 0.75]
○ Hard class: means uniformly sampled from [0.45, 0.55]

● Oracle
○ Takes a discrete probability distribution (probability vector) as

input
○ Outputs the regret measured on a group of bandit instances

Deep Learning Approach
● Takes a probability vector as input
● Outputs the estimated regret

● Data Generation:
○ Random vectors after projection
○ Normalized random vectors
○ Disturbed Gaussian vectors

Neural Network Model
● Only one layer to avoid overfitting

Train & Valid Loss

RandUCB Optimization Using Neural Networks

● Autograd computes the gradient of
input using requires_grad=True

● Convergence condition:
○ The grad vector becomes zero

vector
■ Less than 10 iterations

○ Meets max iterations
■ Usually 25 - 50

● Learning rates
○ 0.01, 0.0075, 0.005, 0.0025
○ Not very sensitive on the results if

within a range

● Random Initialization
○ 50 for each learning rate

Evolution Strategy Approach
● Takes a probability vector as input
● Outputs the regret

● We use Python tool pycma with implemented CMA-ES

Evolution Strategy Approach

Comparison
● Evolution Strategy

○ Derivative-free
○ No data collection needed
○ No optimization step needed

● Deep Learning
○ Guarantees a solution (might not be the best)
○ Takes less time to obtain a result (excluding data

collection)

Experiments
● Single Bandit Class (Easy and Hard)
● Hybrid Bandit Class
● Non-Optimistic
● Size of probability vector M=2
● Comparison between more (1000) and less (10)

bandit instances
● Performance on linear bandits

Single Bandit Class (Deep Learning)

Single Bandit Class (Evolution Strategy)

Disadvantages of Evolution Strategy

● Cannot always provide a solution when the
algorithm stops

● Too deterministic
● When the problem is more complex (hard), the

performance is not consistent

Hybrid Bandit Class (Deep Learning)

Non-Optimistic Case

Size of probability vector M=2

Comparison between more (1000) and less (10) bandit instances

Performance on linear bandits

Future Work

● Collect data using 1000 bandit instances
● Apply deep learning approach on linear bandits

and weighted linear bandits [3]
● If the results are promising, propose a randomized

tree search algorithm

Future Work
[1] Sharan Vaswani, Abbas Mehrabian, Audrey Durand, and Branislav Kveton. Old
dog learns new tricks: Randomized ucb for bandit problems. arXiv preprint
arXiv:1910.04928, 2019.

[2] Weiran Wang and Miguel A Carreira-Perpinan. Projection onto the probability
simplex: An efficient algorithm with a simple proof, and an application. arXiv
preprint arXiv:1309.1541, 2013.

[3] Yoan Russac, Claire Vernade, and Olivier Cappe. Weighted linear bandits for
non-stationary environments. In Advances in Neural Information Processing
Systems, pages 12017–12026, 2019.

