

RandUCB Optimization

Yutong Yan

Outline

- Randomized upper confidence bound (RandUCB)
- **Projection onto simplex**
- Bandit instances settings
- Deep learning approach
- Evolution strategy approach
- Results
- Future work

Multi-armed bandit

Algorithm 1: MAB algorithm

Input: Action set \mathcal{A} for time step t = 1, 2, 3, ... do Select i_t from \mathcal{A} Get reward $r_t \sim \mathcal{D}_{i_t}$ Update i_t using r_t end

- Maximize $\sum_{t=1}^{r} r_t$
- By choosing optimal action:

$$i_{\star} = rgmax_{i \in \mathcal{A}} \mu_{i}$$
 , where $\mu_{i} = \mathbb{E}[\mathcal{D}_{i}]$

• Minimize expected regret:

$$R(T) = \sum_{t=1}^{T} [\mu_{\star} - \mu_{i_t}]$$

Randomized upper confidence bound (RandUCB)

Upper Confidence Bound (UCB)
 The policy to select the arm is

$$i_t = \underset{i \in \mathcal{A}}{\operatorname{argmax}} \{ \hat{\mu}_i(t) + \beta \mathcal{C}_i(t) \}$$

- RandUCB
 - The policy to select the arm is

$$i_t = \underset{i \in \mathcal{A}}{\operatorname{argmax}} \{ \hat{\mu}_i(t) + Z_t \mathcal{C}_i(t) \}$$

The sampling distribution

- Consider a discrete distribution on [L, U]
- There are *M* points in the distribution

$$\alpha_1 = L, \dots, \alpha_M = U$$
$$p_m := P(Z = \alpha_m)$$

- UCB algorithm: M=1, L=U= β
- Optimistic: L=0
- Non-optimistic: L=-U

Motivation of this work

- RandUCB uses a truncated Gaussian distribution [1]
 - Works fine for MAB, Linear bandits (LB)
 - Fails at tree search bandits
- The goal of this work
 - Finds a discrete probability distribution
 - Outperforms Gaussian distribution
 - Works in all bandit variants

Projection Method

• We implement the projection method proposed in [2]

Algorithm 2: Projection [2]

Input:
$$\mathbf{y} \in \mathbb{R}^{D}$$

Sort \mathbf{y} into \mathbf{u} : $u_{1} \geq u_{2} \geq ... \geq u_{D}$
Find $\rho = \max\{1 \leq j \leq D : \mu_{j} + \frac{1}{j}(1 - \sum_{i=1}^{j} \mu_{i}) > 0\}$
Define $\lambda = \frac{1}{\rho}(1 - \sum_{i=1}^{\rho} \mu_{i})$
Output: \mathbf{x} s.t. $x_{i} = \max\{y_{i} + \lambda, 0\}, i = 1, ..., D.$

Bandit Instances Setting

- Bandit class
 - Easy class: means uniformly sampled from [0.25, 0.75]
 - Hard class: means uniformly sampled from [0.45, 0.55]
- Oracle
 - Takes a discrete probability distribution (probability vector) as input
 - Outputs the regret measured on a group of bandit instances

 $R_T(p)$

Deep Learning Approach

- Takes a probability vector as input
- Outputs the estimated regret

$$NN: \mathbf{p} \to \hat{R}_T(\mathbf{p})$$

- Data Generation:
 - Random vectors after projection
 - Normalized random vectors
 - Disturbed Gaussian vectors

Neural Network Model

• Only one layer to avoid overfitting

Input Si	ze Hidden Lay	er Size Ou	utput Size	Activ	tivation Function		Learning Ra	ite
10	5		1		Sigmoid		1e-3	
	Loss Function	Optimizer	Weight 1	Decay	Epochs	Batch	Size	
	MSE	Adam	1e-8	5	100	50		

Table 1: Neural Network Model Details

Train & Valid Loss

RandUCB Optimization Using Neural Networks

```
Algorithm 3: RandUCB Optimization Using NN
 Input: learning rate lr
Initialize \mathbf{p}_0 randomly
\hat{\mathbf{p}}_0 \leftarrow \mathbf{p}_0
while convergence condition not met do
       \hat{R}_T(\mathbf{p}_0) \leftarrow \mathrm{NN}(\mathbf{p}_0)
       ORACLE outputs R_T(\mathbf{p}_0)
       if R_T(\mathbf{p}_0) < R_T(\mathbf{\hat{p}_0}) then
         \hat{\mathbf{p}}_0 \leftarrow \mathbf{p}_0
       end
       Loss \leftarrow MSE(\hat{R}_T(\mathbf{p}_0) - R_T(\mathbf{p}_0))
       NN computes \nabla \mathbf{p_0} w.r.t Loss
       \mathbf{p_0} \leftarrow \mathbf{p_0} - \ln^* \nabla \mathbf{p_0}
       \mathbf{p}_0 \leftarrow \operatorname{project}(\mathbf{p}_0)
end
 Output: \hat{\mathbf{p}}_{\mathbf{0}}
```

- Autograd computes the gradient of input using requires_grad=True
- Convergence condition:
 - The grad vector becomes zero vector
 - Less than 10 iterations
 - Meets max iterations
 - Usually 25 50
- Learning rates
 - 0.01, 0.0075, 0.005, 0.0025
 - Not very sensitive on the results if within a range
- Random Initialization
 - \circ 50 for each learning rate

Evolution Strategy Approach

- Takes a probability vector as input
- Outputs the regret

$$f: \mathbf{p} \to R_T(\mathbf{p})$$

• We use Python tool pycma with implemented CMA-ES

Evolution Strategy Approach

Algorithm 4: RandUCB Optimization Using ES Input: initial probability vector \mathbf{p}_0 , sigma σ es \leftarrow CMAES(\mathbf{p}_0, σ) while stopping criteria not met do $\mathbf{\hat{p}} \leftarrow \text{es.ask}()$ **ORACLE** outputs $R_T(\text{project}(\mathbf{\hat{p}}))$ es.tell($\hat{\mathbf{p}}$) $\leftarrow R_T(\text{project}(\hat{\mathbf{p}}))$ end $\hat{\mathbf{p}} \leftarrow \text{es.fmin}_{\mathbf{x}}$ $\hat{\mathbf{p}} \leftarrow \operatorname{project}(\hat{\mathbf{p}})$ Output: **p**

Comparison

- Evolution Strategy
 - Derivative-free
 - No data collection needed
 - No optimization step needed
- Deep Learning
 - Guarantees a solution (might not be the best)
 - Takes less time to obtain a result (excluding data collection)

Experiments

- Single Bandit Class (Easy and Hard)
- Hybrid Bandit Class
- Non-Optimistic
- Size of probability vector M=2
- Comparison between more (1000) and less (10) bandit instances
- Performance on linear bandits

Single Bandit Class (Deep Learning)

Single Bandit Class (Evolution Strategy)

Disadvantages of Evolution Strategy

- Cannot always provide a solution when the algorithm stops
- Too deterministic
- When the problem is more complex (hard), the performance is not consistent

Hybrid Bandit Class (Deep Learning)

Learned from hybrid & tested on easy (Equal Weight)

Non-Optimistic Case

Size of probability vector M=2

Comparison between more (1000) and less (10) bandit instances

Performance on linear bandits

Future Work

- Collect data using 1000 bandit instances
- Apply deep learning approach on linear bandits and weighted linear bandits [3]
- If the results are promising, propose a randomized tree search algorithm

Future Work

[1] Sharan Vaswani, Abbas Mehrabian, Audrey Durand, and Branislav Kveton. Old dog learns new tricks: Randomized ucb for bandit problems. arXiv preprint arXiv:1910.04928, 2019.

[2] Weiran Wang and Miguel A Carreira-Perpinan. Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. arXiv preprint arXiv:1309.1541, 2013.

[3] Yoan Russac, Claire Vernade, and Olivier Cappe. Weighted linear bandits for non-stationary environments. In Advances in Neural Information Processing Systems, pages 12017–12026, 2019.