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Multi-armed bandit
● Maximize

● By choosing optimal action:

                       , where

● Minimize expected regret:



Randomized upper confidence bound (RandUCB)

● Upper Confidence Bound (UCB)
○ The policy to select the arm is

● RandUCB 
○ The policy to select the arm is



The sampling distribution

● Consider a discrete distribution on [L, U]
● There are M points in the distribution

● UCB algorithm: M=1, L=U=𝛽
● Optimistic: L=0
● Non-optimistic: L=-U



 Motivation of this work

● RandUCB uses a truncated Gaussian distribution [1] 
○ Works fine for MAB, Linear bandits (LB)
○ Fails at tree search bandits

● The goal of this work
○ Finds a discrete probability distribution
○ Outperforms Gaussian distribution
○ Works in all bandit variants



Projection Method

● We implement the projection method proposed in [2]



Bandit Instances Setting
● Bandit class

○ Easy class: means uniformly sampled from [0.25, 0.75]
○ Hard class: means uniformly sampled from [0.45, 0.55]

● Oracle
○ Takes a discrete probability distribution (probability vector) as 

input
○ Outputs the regret measured on a group of bandit instances



Deep Learning Approach
● Takes a probability vector as input
● Outputs the estimated regret

● Data Generation: 
○ Random vectors after projection 
○ Normalized random vectors
○ Disturbed Gaussian vectors 



Neural Network Model
● Only one layer to avoid overfitting



Train & Valid Loss



RandUCB Optimization Using Neural Networks

● Autograd computes the gradient of 
input using requires_grad=True

● Convergence condition:
○ The grad vector becomes zero 

vector
■ Less than 10 iterations

○ Meets max iterations
■ Usually 25 - 50

● Learning rates
○ 0.01, 0.0075, 0.005, 0.0025
○ Not very sensitive on the results if 

within a range

● Random Initialization
○ 50 for each learning rate



Evolution Strategy Approach
● Takes a probability vector as input
● Outputs the regret

● We use Python tool pycma with implemented CMA-ES



Evolution Strategy Approach



Comparison
● Evolution Strategy

○ Derivative-free
○ No data collection needed
○ No optimization step needed

● Deep Learning
○ Guarantees a solution (might not be the best)
○ Takes less time to obtain a result (excluding data 

collection)



Experiments
● Single Bandit Class (Easy and Hard)
● Hybrid Bandit Class
● Non-Optimistic
● Size of probability vector M=2
● Comparison between more (1000) and less (10) 

bandit instances
● Performance on linear bandits



Single Bandit Class (Deep Learning)



Single Bandit Class (Evolution Strategy)



Disadvantages of Evolution Strategy

 

● Cannot always provide a solution when the 
algorithm stops

● Too deterministic
● When the problem is more complex (hard), the 

performance is not consistent



Hybrid Bandit Class (Deep Learning)



Non-Optimistic Case



Size of probability vector M=2



Comparison between more (1000) and less (10) bandit instances



Performance on linear bandits



Future Work

● Collect data using 1000 bandit instances
● Apply deep learning approach on linear bandits 

and weighted linear bandits [3]
● If the results are promising, propose a randomized 

tree search algorithm
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